yingweiwo

Pentostatin (CI825; Deoxycoformycin)

Alias: Deoxycoformycin; CI825; CI-825; Deoxycoformycin; Nipent; 53910-25-1; 2'-Deoxycoformycin; PD-ADI; Pentostatina; Pentostatine; CI 825; PD81565; PD-81565; PD 81565; covidarabine; deoxycoformycin; pentostatine. brand name: Nipent.
Cat No.:V5214 Purity: ≥98%
Pentostatin (CI-825; Deoxycoformycin), a purine analog and an anticancer of the antimetabolite class, is an irreversible inhibitor of adenosine deaminase with Kiof 2.5 pM.
Pentostatin (CI825; Deoxycoformycin)
Pentostatin (CI825; Deoxycoformycin) Chemical Structure CAS No.: 53910-25-1
Product category: Adenosine Deaminase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Pentostatin (CI-825; Deoxycoformycin), a purine analog and an anticancer of the antimetabolite class, is an irreversible inhibitor of adenosine deaminase with Ki of 2.5 pM. Pentostatin acts by mimicking the nucleoside adenosine and thus inhibits the enzyme adenosine deaminase, interfering with the cell's ability to process DNA. Cancer cells generally divide more often than healthy cells; DNA is highly involved in cell division (mitosis) and drugs which target DNA-related processes are therefore more toxic to cancer cells than healthy cells. Pentostatin is used to treat hairy cell leukemia. It is given by intravenous infusion once every two weeks for three to six months. Additionally, pentostatin has been used to treat steroid-refractory acute and chronic graft-versus-host disease. Pentostatin is also used in chronic lymphocytic leukemia (CLL) patients who have relapsed.

Biological Activity I Assay Protocols (From Reference)
Targets
Adenosine deaminase (Ki = 2.5 pM)
ln Vitro
The aim of this study was to evaluate the anti-trypanosomal effect of treatment with 3'-deoxyadenosine (cordycepin) combined with deoxycoformycin (pentostatin: inhibitor of the enzyme adenosine deaminase) in vitro by using mice experimentally infected with Trypanosoma evansi. In vitro, a dose-dependent trypanocidal effect of cordycepin was observed against the parasite[2].
ln Vivo
Pentostatin (2 mg/kg) combined with cordycepin (2 mg/kg) was 100% effective against Trypanosoma evansi-infected mice. Increased levels of some biochemical parameters, especially liver enzymes, were accompanied by histological lesions of the liver and kidneys. Pentostatin alone has no effect on infected groups. All dogs developed granulocytopenia with granulocyte counts <500 cells/μL starting on day 4. Thrombocytopenia (<20,000 platelets/μL) begins on day 7 after HCT, with a nadir of 3000 to 14000 platelets/μL [1].
In the in vivo trials, the two drugs were used individually and in combination of different doses. The drugs when used individually had no curative effect on infected mice. However, the combination of cordycepin (2 mg kg-1) and pentostatin (2 mg kg-1) was 100% effective in the T. evansi-infected groups. There was an increase in levels of some biochemical parameters, especially on liver enzymes, which were accompanied by histological lesions in the liver and kidneys. Based on these results we conclude that treatment using the combination of 3'-deoxyadenosine with deoxycoformycin has a curative effect on mice infected with T. evansi. However, the therapeutic protocol tested led to liver and kidney damage, manifested by hepatotoxicity and nephrotoxicity[2].
Extracorporeal photopheresis (ECP) and the purine analog pentostatin exert potent immunomodulatory effects. We evaluated the use of these treatment modalities to prevent GVHD in a canine model of unrelated dog leukocyte Ag-mismatched hematopoietic cell transplantation, after conditioning with 920 cGy TBI. We have shown previously in this model that 36/40 dogs given MTX alone as postgrafting immunosuppression engrafted and that 25 of 40 dogs had severe GVHD and median survival of 21 days. In the current study, nine dogs received conditioning with 920 cGy TBI and postgrafting MTX either with ECP on days -2 to -1 alone (n=5) or ECP on days -6 and -5 combined with two doses of pentostatin (days -4 to -3) (n=4). Seven of nine dogs achieved engraftment. Six dogs developed severe acute GVHD (four in the group with ECP alone and two with pentostatin and ECP). We failed to demonstrate a positive impact of ECP and pentostatin for the prevention of GVHD compared with historical control dogs.[1]
Animal Protocol
DLA-nonidentical marrow grafts [1]
All recipient dogs were conditioned for transplantation by 920 cGy TBI at 7 cGy/minute using a linear accelerator. Dogs in group A1 received ECP administered on days −2 and −1 with TBI on day 0 and dogs in group A2 received ECP on days −6 and −5, intravenous (IV) infusion of pentostatin at a dose of 4mg/m2 on days −4 and −3, and TBI on day 0 (Table 1). Donor marrow cells from DLA-nonidentical donors were aspirated under general anesthesia through needles inserted into humeri and femora and stored in heparinized tissue culture medium at 4°C for no more than 6 hours.22 Within 4 hours of TBI, harvested marrow cells were infused IV into recipients at a median dose of 2.9 (range, 1.9 to 6.1) ×108 total nucleated cells (TNC)/kg. The day of marrow grafting was designated as day 0. In addition to marrow graft, recipients were given IV infusions of peripheral blood buffy coat cells obtained by leukapheresis from the marrow donor on days 1 and 2, at a median dose of 2.3 (range, 1.2 to 6.9) ×108 TNC/kg to ensure consistent hematopoietic engraftment. MTX, at a dose of 0.4 mg/kg intravenously was used as postgrafting immunosuppression and administered on days +1, +3, +6 and +11, then weekly thereafter until day 102.
References
[1]. Bethge WA, et al. Extracorporeal photopheresis combined with pentostatin in the conditioning regimen for canine hematopoietic cell transplantation does not prevent GVHD. Bone Marrow Transplant. 2014 Sep;49(9):1198-204.
[2]. Dalla Rosa L, et al. Cordycepin (3'-deoxyadenosine) pentostatin (deoxycoformycin) combination treatment of mice experimentally infected with Trypanosoma evansi. Parasitology. 2013 Apr;140(5):663-71
Additional Infomation
Pentostatin is a member of the class of coformycins that is coformycin in which the hydroxy group at position 2' is replaced with a hydrogen. It is a drug used for the treatment of hairy cell leukaemia. It has a role as an EC 3.5.4.4 (adenosine deaminase) inhibitor, an antineoplastic agent, an antimetabolite, a bacterial metabolite and an Aspergillus metabolite. It is a conjugate base of a pentostatin(1+).
A potent inhibitor of adenosine deaminase. The drug is effective in the treatment of many lymphoproliferative malignancies, particularly hairy-cell leukemia. It is also synergistic with some other antineoplastic agents and has immunosuppressive activity.
Pentostatin is a Nucleoside Metabolic Inhibitor. The mechanism of action of pentostatin is as a Nucleic Acid Synthesis Inhibitor.
Pentostatin is a purine analogue and antineoplastic agent used in the therapy of hairy cell leukemia and T cell lymphomas. Pentostatin is associated with a low rate of serum enzyme elevations during therapy and has been linked to rare instances of severe acute liver injury with jaundice.
Pentostatin is a natural product found in Streptomyces antibioticus with data available.
Pentostatin is a purine nucleotide analogue antibiotic isolated from the bacterium Streptomyces antibioticus. Also known as 2'-deoxycoformycin, pentostatin binds to and inhibits adenine deaminase (ADA), an enzyme essential to purine metabolism; ADA activity is greatest in cells of the lymphoid system with T-cells having higher activity than B-cells and T-cell malignancies higher ADA activity than B-cell malignancies. Pentostatin inhibition of ADA appears to result in elevated intracellular levels of dATP which may block DNA synthesis through the inhibition of ribonucleotide reductase. This agent may also inhibit RNA synthesis and may selectively deplete CD26+ lymphocytes. (NCI04)
View More

Pentostatin can cause developmental toxicity according to state or federal government labeling requirements.
Pentostatin is only found in individuals that have used or taken this drug. It is a potent inhibitor of adenosine deaminase. The drug is effective in the treatment of many lymphoproliferative malignancies, particularly hairy-cell leukemia. It is also synergistic with some other antineoplastic agents and has immunosuppressive activity. Pentostatin is a potent transition state inhibitor of adenosine deaminase (ADA), the greatest activity of which is found in cells of the lymphoid system. T-cells have higher ADA activity than B-cells, and T-cell malignancies have higher activity than B-cell malignancies. The cytotoxicity that results from prevention of catabolism of adenosine or deoxyadenosine is thought to be due to elevated intracellular levels of dATP, which can block DNA synthesis through inhibition of ribonucleotide reductase. Intracellular activation results in incorporation into DNA as a false purine base. An additional cytotoxic effect is related to its incorporation into RNA. Cytotoxicity is cell cycle phase-specific (S-phase).
A potent inhibitor of ADENOSINE DEAMINASE. The drug induces APOPTOSIS of LYMPHOCYTES, and is used in the treatment of many lymphoproliferative malignancies, particularly HAIRY CELL LEUKEMIA. It is also synergistic with some other antineoplastic agents and has immunosuppressive activity.


Drug Indication
For the treatment of hairy cell leukaemia refractory to alpha interferon.
LiverTox Summary
Pentostatin is a purine analogue and antineoplastic agent used in the therapy of hairy cell leukemia and T cell lymphomas. Pentostatin is associated with a low rate of serum enzyme elevations during therapy and has been linked to rare instances of severe acute liver injury with jaundice.
Pentostatin is used for the palliative treatment of hairy cell leukemia (leukemic reticuloendotheliosis) that responds inadequately to, or progresses during, interferon alfa therapy. Pentostatin has been designated an orphan drug by the US Food and Drug Administration (FDA) for the treatment of this condition. ... Pentostatin produces clinically important tumor regression or disease stabilization (complete or partial responses) in approximately 80-100% of patients with hairy cell leukemia, including in previously untreated patients (eg, those who have not undergone splenectomy or other therapy) as well as in those in whom splenectomy and/or therapy with other agents (eg, interferons, antineoplastic agents) have failed to control the disease (eg, those with progressive disease). In clinical studies in patients with interferon alfa-refractory hairy cell leukemia, a complete response to pentostatin therapy generally was defined as clearing of peripheral blood and bone marrow of hairy cells; normalization of organomegaly and lymphadenopathy; and recovery of hemoglobin concentration to at least 12 g/dl, platelet count to at least 100,000/cu mm, and granulocyte count to at least 1500/cu mm. A partial response was defined as a decrease of greater than 50% in the number of hairy cells in peripheral blood and bone marrow and a decrease of greater than 50% in organomegaly and lymphadenopathy; hematologic parameters for a partial response were the same as those for a complete response. Overall complete and partial responses of 58 and 28%, respectively, reportedly were observed in a limited number of these patients receiving pentostatin 4 mg/sq m iv every other week for 3 mo; responding patients continued treatment for another 3-9 mos. The median time to response in these patients reportedly was 4.7 mo (range: 2.9-24.1 mo). The median duration of response to pentostatin therapy in 2 clinical studies of patients with hairy cell leukemia reportedly exceeded 7.7 and 15.2 mo, with relapse occurring in approximately 15-20% of patients showing an initial response. For patients with progressive, postsplenectomy disease, pentostatin generally has been considered an alternative to interferon alfa or secondary therapy for interferon refractory disease since experience with interferon alfa has been more extensive to date. However, superiority of either drug or of other therapies remains to be established.
Pentostatin is a toxic drug with a low therapeutic index, and a therapeutic response is not likely to occur without some evidence of toxicity. The drug must be used only under constant supervision by physicians experienced in therapy with cytotoxic agents. Most, but not all, adverse effects of pentostatin are reversible if detected promptly. When severe adverse effects occur during pentostatin therapy, the drug should be discontinued or dosage reduced and appropriate measures instituted. Pentostatin should be reinstituted with caution if at all, with adequate consideration of further need for the drug, and with awareness of possible recurrence of toxicity.
Pharmacodynamics
Pentostatin is an antineoplastic anti-metabolite used in the treatment of several forms of leukemia including acute nonlymphocytic leukemia and hairy cell leukemia. Anti-metabolites masquerade as purine or pyrimidine - which become the building blocks of DNA. They prevent these substances becoming incorporated in to DNA during the "S" phase (of the cell cycle), stopping normal development and division. It is a 6-thiopurine analogue of the naturally occurring purine bases hypoxanthine and guanine. Intracellular activation results in incorporation into DNA as a false purine base. An additional cytotoxic effect is related to its incorporation into RNA. Cytotoxicity is cell cycle phase-specific (S-phase).
Absorption
Not absorbed orally, crosses blood brain barrier. Route of Elimination
In man, following a single dose of 4 mg/m2 of pentostatin infused over 5 minutes, approximately 90% of the dose was excreted in the urine as unchanged pentostatin and/or metabolites as measured by adenosine deaminase inhibitory activity.
Clearance
68 mL/min/m2
Plasma concentrations of pentostatin following direct iv injection of 0.25 mg/kg daily for 4 or 5 days in a limited number of patients with advanced, refractory cancer ranged from approximately 3.2-9.7 ng/ml. Plasma concentrations appear to increase linearly with dose; in a study in patients with leukemia, plasma pentostatin concentrations determined 1 hour after administration of 0.25 or 1 mg/kg of the drug as a 30 min iv infusion averaged approximately 0.4 or 1.26 ug/ml, respectively.
Metabolism / Metabolites
Primarily hepatic, but only small amounts are metabolized. DrugBank Primarily hepatic, but only small amounts are metabolized. Route of Elimination: In man, following a single dose of 4 mg/m2 of pentostatin infused over 5 minutes, approximately 90% of the dose was excreted in the urine as unchanged pentostatin and/or metabolites as measured by adenosine deaminase inhibitory activity. Half Life: 5.7 hours (with a range between 2.6 and 16 hrs)
Biological Half-Life
hours (with a range between 2.6 and 16 hrs)
Following iv administration of 4 mg/sq m of pentostatin as a single dose over 5 min in healthy individuals, the distribution half-life and terminal elimination half-life reportedly averaged 11 min and 5.7 hr, respectively. In a multiple dose study in a limited number of patients receiving 36 courses of pentostatin at a dosage of 4 mg/sq m iv, distribution half-life and terminal elimination half-life reportedly averaged 9.6 min (range: 3.1-48.5 min) and 4.9 hr, respectively. In other studies in a limited number of patients with advanced cancer, the distribution half-life averaged 17-85 min and the terminal elimination half-life averaged 2.6-15 hr following single iv doses of 0.1 or 0.25 mg/kg of pentostatin.
Mechanism of Action
Pentostatin is a potent transition state inhibitor of adenosine deaminase (ADA), the greatest activity of which is found in cells of the lymphoid system. T-cells have higher ADA activity than B-cells, and T-cell malignancies have higher activity than B-cell malignancies. The cytotoxicity that results from prevention of catabolism of adenosine or deoxyadenosine is thought to be due to elevated intracellular levels of dATP, which can block DNA synthesis through inhibition of ribonucleotide reductase. Intracellular activation results in incorporation into DNA as a false purine base. An additional cytotoxic effect is related to its incorporation into RNA. Cytotoxicity is cell cycle phase-specific (S-phase).
The precise mechanism(s) of action of pentostatin in hairy cell leukemia and other lymphoid malignancies has not been fully elucidated. Pentostatin is a potent transition state (tight binding) inhibitor of adenosine deaminase, an enzyme involved in purine metabolism. This enzyme appears to regulate intracellular adenosine concentrations via irreversible deamination of adenosine and deoxyadenosine. Although adenosine deaminase is widely distributed in mammalian tissues, highest levels are found in lymphoid tissue: levels in circulating T cells (particularly in T cell lymphoblastic leukemia) are higher than those in B cells. While the level of enzyme activity is low in healthy bone marrow, it is high in myeloid leukemic blast cells. ... Inhibition of adenosine deaminase by pentostatin results in intracellular accumulation of toxic levels of adenine deoxynucleotides (eg, deoxyadenosine triphosphate), which in the presence of deoxyadenosine can lead to cell death. Pentostatin alone, even in concentrations high enough to inhibit adenosine deaminase completely, is not cytotoxic to lymphoid cells cultured in the absence of cytotoxic nucleosides (eg, deoxyadenosine). Thus, unlike many other nucleoside-analog antineoplastic agents, the cytoxic effects of pentostatin do not appear to be attributable directly to the drug or its metabolites but instead appear to result indirectly from the effects of the substrates for adenosine deaminase (adenosine and deoxyadenosine) and/or their metabolites. Although elevated deoxyadenosine triphosphate concentrations in the cell can block DNA synthesis via inhibition of ribonucleotide reductase, the precise role of high deoxyadenosine triphosphate concentrations in pentostatin-induced cytotoxicity is controversial. Pentostatin also can inhibit RNA synthesis, cause DNA strand breaks, disrupt ATP-dependent cellular processes, and inhibit adenosylhomocysteinase (S-adenosylhomocysteine hydrolase), all of which also may contribute to the drug's lymphocytotoxic effects. McEvoy, G.K. (ed.). American Hospital Formulary Service - Drug Information 93. Bethesda, MD: American Society of Hospital Pharmacists, Inc., 1993 (Plus Supplements, 1993)., p. 633
The degree to which pentostatin inhibits adenosine deaminase varies among cell types, possibly because of differences in enzyme inhibitor dissociation constants in different cells as well as differences in cellular accumulation of the drug. There generally has been no clear relation between adenosine deaminase inhibition and pentostatin induced cytotoxicity in clinical studies. However, the cytotoxic and growth inhibitory effects of adenosine deaminase inhibition appear to be greater in T cells than in B cells. Although conflicting data exist, some evidence suggests that T cells accumulate more deoxyadenosine triphosphate than B cells and thus may be more susceptible to the effects of adenosine deaminase inhibition; deoxyadenosine triphosphate concentrations in B cells may be lower because these cells possess higher membrane associated ecto-5'-nucleotidase activity, which promotes the hydrolysis of higher phosphate compounds to more freely diffusible nucleosides. Differences in the sensitivity of B and T cells to pentostatin's effects also may be artifactual as a result of testing procedure variables (eg, cell source, culture media conditions). The time course of adenosine deaminase inhibition appears to differ in erythrocytes and lymphocytes and depends on the intrinsic activity of the enzyme in the cell as well as cell specific pharmacodynamics (eg, protein synthesis, rate of cellular proliferation). In some cells, inhibition by a single dose of pentostatin may persist for 1 week or longer. It is not known whether recovery from adenosine deaminase inhibition occurs as a result of slow efflux of pentostatin from the cell or regeneration of adenosine deaminase; however, recovery of blood adenosine deaminase activity may result from replenishment of enzyme from newly formed erythrocytes in that such recovery in animals has been reported to coincide with the life span of erythrocytes in circulation (eg, 40-60 days). ... Response to pentostatin varies according to the type and sensitivity of the neoplasm being treated. Conditions associated with relatively low adenosine deaminase activity (eg, hairy cell and chronic lymphocytic leukemias) manifest prolonged and complete adenosine deaminase inhibition in response to relatively low dosages of pentostatin, whereas conditions associated with high adenosine deaminase activity (eg, acute leukemias) are less sensitive to the drug, requiring higher doses that produce relatively incomplete inhibition of adenosine deaminase activity. McEvoy, G.K. (ed.). American Hospital Formulary Service - Drug Information 93. Bethesda, MD: American Society of Hospital Pharmacists, Inc., 1993 (Plus Supplements, 1993)., p. 633

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C11H16N4O4
Molecular Weight
268.2691
Exact Mass
268.117
Elemental Analysis
C, 49.25; H, 6.01; N, 20.88; O, 23.86
CAS #
53910-25-1
PubChem CID
439693
Appearance
Typically exists as White to off-white solids at room temperature
Density
1.8±0.1 g/cm3
Boiling Point
673.1±65.0 °C at 760 mmHg
Melting Point
220-225ºC
Flash Point
360.9±34.3 °C
Vapour Pressure
0.0±2.2 mmHg at 25°C
Index of Refraction
1.793
LogP
-2.16
SMILES
O1[C@]([H])(C([H])([H])O[H])[C@]([H])(C([H])([H])[C@]1([H])N1C([H])=NC2[C@@]([H])(C([H])([H])N=C([H])N([H])C1=2)O[H])O[H]
InChi Key
FPVKHBSQESCIEP-KDXUFGMBSA-N
InChi Code
InChI=1S/C11H16N4O4/c16-3-8-6(17)1-9(19-8)15-5-14-10-7(18)2-12-4-13-11(10)15/h4-9,16-18H,1-3H2,(H,12,13)/t6-,7+,8+,9-/m0/s1
Chemical Name
(R)-3-((2S,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol
Synonyms
Deoxycoformycin; CI825; CI-825; Deoxycoformycin; Nipent; 53910-25-1; 2'-Deoxycoformycin; PD-ADI; Pentostatina; Pentostatine; CI 825; PD81565; PD-81565; PD 81565; covidarabine; deoxycoformycin; pentostatine. brand name: Nipent.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~100 mg/mL (~372.76 mM)
DMSO : ≥ 50 mg/mL (~186.38 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (7.75 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (7.75 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (7.75 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.7276 mL 18.6379 mL 37.2759 mL
5 mM 0.7455 mL 3.7276 mL 7.4552 mL
10 mM 0.3728 mL 1.8638 mL 3.7276 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Nonmyeloablative Haploidentical Peripheral Blood Mobilized Hematopoietic Precursor Cell Transplantation for Sickle Cell Disease
CTID: NCT03077542
Phase: Phase 1/Phase 2
Status: Active, not recruiting
Date: 2024-08-07
Dose-finding Study Using Pentostatin for Injection in the Treatment of Steroid-refractory aGvHD
CTID: NCT00032773
Phase: Phase 1/Phase 2
Status: Terminated
Date: 2024-08-02
A Reduced-Intensity Conditioning Regimen (Cyclophosphamide, Pentostatin, Anti-thymocyte Globulin) Followed by Haploidentical Hematopoietic Stem Cell Transplant for the Treatment of Patients With Refractory or Recurrent Severe Aplastic Anemia
CTID: NCT05757310
Phase: Phase 1
Status: Recruiting
Date: 2024-05-23
Randomized Phase II Trial of Rituximab With Either Pentostatin or Bendamustine for Multiply Relapsed or Refractory Hairy Cell Leukemia
CTID: NCT01059786
Phase: Phase 2
Status: Active, not recruiting
Date: 2024-05-01
A Blood Stem Cell Transplant for Sickle Cell Disease
CTID: NCT03249831
Phase: Phase 1
Status: Active, not recruiting
Date: 2024-03-07
Contact Us