yingweiwo

(±)-Carnitine chloride

Cat No.:V30507 Purity: ≥98%
(±)-Carnitine chloride has two isomers, D and L.
(±)-Carnitine chloride
(±)-Carnitine chloride Chemical Structure CAS No.: 461-05-2
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
5g
Other Sizes

Other Forms of (±)-Carnitine chloride:

  • Levocarnitine
  • L-Carnitine-d3 hydrochloride ((R)-Carnitine-d3 hydrochloride)
  • (±)-Carnitine-d9 chloride (DL-Carnitine-d9 (chloride))
  • DL-Carnitine
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
(±)-Carnitine chloride has two isomers, D and L. L-carnitine plays important roles in the beta-oxidation of fatty acids and also has antioxidant and anti~inflammatory activities.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Transporting long-chain fatty acids across the inner mitochondrial membrane is L-carnitine's primary job. Carnitine palmitoyltransferase (CPT)-I converts L-carnitine and acyl-CoA into acylcarnitine. CPT-II then converts the transported acylcarnitine into acyl-CoA in the mitochondrial matrix. Treatment with L-carnitine enhances palmitoyl-CoA-induced mitochondrial respiration, which is subsequently quickened by ADP. L-carnitine causes this acceleration in a concentration-dependent manner, and at 5 mM L-carnitine, it approaches saturation [1]. In H2O2-treated HL7702 cells, L-carnitine pretreatment increased Nrf2 nuclear translocation, DNA binding activity, and heme oxygenase-1 (HO-1) expression. L-carnitine activates the Nrf2 signaling pathway via Akt, thereby shielding HL7702 cells from H2O2-induced cellular damage [2].
ln Vivo
L-carnitine has been shown to raise IGF-1 concentrations and downregulate the ubiquitin-proteasome pathway in animal models. The loss of soleus muscle weight and fiber size was lessened after two weeks of L-carnitine-infused hindlimb suspension. Furthermore, atrogin-1 mRNA expression is said to be crucial for muscle atrophy and can be inhibited by L-carnitine [3]. In the L-NAME group, concurrent L-carnitine administration attenuated pro-oxidative and pro-inflammatory states, as well as renal fibrosis (linked to decreased plasma TGF-β1 levels), and PPAR-γ expression increased. 4].
References

[1]. Protective action of L-carnitine on cardiac mitochondrial function and structure against fatty acidstress. Biochem Biophys Res Commun. 2011 Aug 19;412(1):61-7.

[2]. l-carnitine protects human hepatocytes from oxidative stress-induced toxicity through Akt-mediated activation of Nrf2 signaling pathway. Can J Physiol Pharmacol. 2016 May;94(5):517-25.

[3]. l-Carnitine supplement reduces skeletal muscle atrophy induced by prolonged hindlimb suspension in rats. Appl Physiol Nutr Metab. 2016 Dec;41(12):1240-1247.

[4]. L-carnitine attenuates the development of kidney fibrosis in hypertensive rats by upregulating PPAR-γ. Am J Hypertens. 2014 Mar;27(3):460-70.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C7H16CLNO3
Molecular Weight
197.6598
Exact Mass
197.081
CAS #
461-05-2
Related CAS #
L-Carnitine;541-15-1;L-Carnitine-d3 hydrochloride;350818-62-1;(±)-Carnitine-d9 chloride;1219386-75-0;DL-Carnitine;406-76-8
PubChem CID
5970
Appearance
White to off-white solid powder
Melting Point
190-205ºC
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
4
Heavy Atom Count
12
Complexity
139
Defined Atom Stereocenter Count
0
InChi Key
JXXCENBLGFBQJM-UHFFFAOYSA-N
InChi Code
InChI=1S/C7H15NO3.ClH/c1-8(2,3)5-6(9)4-7(10)11;/h6,9H,4-5H2,1-3H3;1H
Chemical Name
(3-carboxy-2-hydroxypropyl)-trimethylazanium;chloride
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ≥ 100 mg/mL (~505.92 mM)
DMSO : ~25 mg/mL (~126.48 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (12.65 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (12.65 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (12.65 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 150 mg/mL (758.88 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 5.0592 mL 25.2960 mL 50.5919 mL
5 mM 1.0118 mL 5.0592 mL 10.1184 mL
10 mM 0.5059 mL 2.5296 mL 5.0592 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us