Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
50mg |
|
||
Other Sizes |
|
Targets |
Natural flavonoid in green tea; COX-1/cyclooxygenase-1
|
---|---|
ln Vitro |
Moderate consumption of wine is associated with a reduced risk of cancer. Grape plant cell cultures were used to purify 12 phenols: the stilbenoids trans-astringin, trans-piceid (2), trans-resveratroloside, trans-resveratrol, trans-piceatannol, cis-resveratroloside, cis-piceid, and cis-resveratrol; the flavans (+)-catechin, (-)-epicatechin, and epicatechin 3-O-gallate; and the flavan dimer procyanidin B2 3'-O-gallate. These compounds were evaluated for potential to inhibit cyclooxygenases and preneoplastic lesion formation in carcinogen-treated mouse mammary glands in organ culture. At 10 micrograms/ml, trans-astringin and trans-piceatannol inhibited development of 7,12-dimethylbenz[a]anthracene-induced preneoplastic lesions in mouse mammary glands with 68.8% and 76.9% inhibition, respectively, compared with untreated glands. The latter compound was the most potent of the 12 compounds tested in this assay, with the exception of trans-resveratrol (87.5% inhibition). In the cyclooxygenase (COX)-1 assay, trans isomers of the stilbenoids appear to be more active than cis isomers: trans-resveratrol [50% inhibitory concentration (IC50) = 14.9 microM, 96%] vs. cis-resveratrol (IC50 = 55.4 microM). In the COX-2 assay, among the compounds tested, only trans- and cis-resveratrol exhibited significant inhibitory activity (IC50 = 32.2 and 50.2 microM, respectively). This is the first report showing the potential cancer-chemopreventive activity of trans-astringin, a plant stilbenoid recently found in wine. trans-Astringin and its aglycone trans-piceatannol were active in the mouse mammary gland organ culture assay but did not exhibit activity in COX-1 and COX-2 assays. trans-Resveratrol was active in all three of the bioassays used in this investigation. These findings suggest that trans-astringin and trans-piceatannol may function as potential cancer-chemopreventive agents by a mechanism different from that of trans-resveratrol[1].
|
References | |
Additional Infomation |
(-)-catechin is the (-)-enantiomer of catechin. It has a role as a metabolite. It is an enantiomer of a (+)-catechin.
(-)-Catechin has been reported in Cinnamomum kotoense, Begonia nantoensis, and other organisms with data available. |
Molecular Formula |
C15H14O6
|
---|---|
Molecular Weight |
290.268064975739
|
Exact Mass |
290.079
|
CAS # |
18829-70-4
|
Related CAS # |
Catechin;154-23-4
|
PubChem CID |
73160
|
Appearance |
White to off-white solid powder
|
Density |
1.593 g/cm3
|
Boiling Point |
630.4ºC at 760 mmHg
|
Melting Point |
175-176ºC
|
Flash Point |
335ºC
|
Vapour Pressure |
1.09E-20mmHg at 25°C
|
LogP |
1.546
|
Hydrogen Bond Donor Count |
5
|
Hydrogen Bond Acceptor Count |
6
|
Rotatable Bond Count |
1
|
Heavy Atom Count |
21
|
Complexity |
364
|
Defined Atom Stereocenter Count |
2
|
SMILES |
C1[C@H]([C@@H](OC2=CC(=CC(=C21)O)O)C3=CC(=C(C=C3)O)O)O
|
InChi Key |
PFTAWBLQPZVEMU-HIFRSBDPSA-N
|
InChi Code |
InChI=1S/C15H14O6/c16-8-4-11(18)9-6-13(20)15(21-14(9)5-8)7-1-2-10(17)12(19)3-7/h1-5,13,15-20H,6H2/t13-,15+/m1/s1
|
Chemical Name |
(2S,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol
|
Synonyms |
(-)-Catechin; 18829-70-4; Catechin l-form; (-)-Catechol; (2S,3R)-2-(3,4-dihydroxyphenyl)chroman-3,5,7-triol; CATECHIN, ALPHA; (2S,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol; FHB0GX3D44;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~125 mg/mL (~430.63 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.08 mg/mL (7.17 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.08 mg/mL (7.17 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.08 mg/mL (7.17 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.4451 mL | 17.2253 mL | 34.4507 mL | |
5 mM | 0.6890 mL | 3.4451 mL | 6.8901 mL | |
10 mM | 0.3445 mL | 1.7225 mL | 3.4451 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.