yingweiwo

1-NBDG

Alias: 1-NBDG; 1NBDG; 1 NBDG; EX-A4323A; (2R,3S,4S,5R,6R)-2-(Hydroxymethyl)-6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino)tetrahydro-2H-pyran-3,4,5-triol; 2376921-70-7; 1-NBDG; EX-A4323A; (2R,3S,4S,5R,6R)-2-(Hydroxymethyl)-6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino)tetrahydro-2H-pyran-3,4,5-triol
Cat No.:V41383 Purity: ≥98%
1-NBDG, an analog of 2-NBDG, is a fluorescent analogue of glucose and an indicator used for measuring glucose uptake by bacteria and live mammalian cells and in tumor biopsies.
1-NBDG
1-NBDG Chemical Structure CAS No.: 2376921-70-7
Product category: New12
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
2mg
5mg
10mg
Other Sizes

Other Forms of 1-NBDG:

  • 2-NBDG
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Purity: ≥98%

Product Description

1-NBDG, an analog of 2-NBDG, is a fluorescent analogue of glucose and an indicator used for measuring glucose uptake by bacteria and live mammalian cells and in tumor biopsies. The uptake of 1-NBDG is competitively inhibited by D-glucose, but not L-glucose or sucrose, in E. coli. Unlike 2-NBDG, which is a good substrate of GLUTs but not SGLTs, 1-NBDG can be transported by both GLUTs and SGLTs. Thus, 1-NBDG is useful for the screening of SGLT1 and SGLT2 inhibitors. Sodium-coupled glucose co-transporters SGLT1 and SGLT2 play important roles in intestinal absorption and renal reabsorption of glucose, respectively. Blocking SGLT2 is a novel mechanism for lowering the blood glucose level by inhibiting renal glucose reabsorption and selective SGLT2 inhibitors are under development for treatment of type 2 diabetes. Furthermore, it has been reported that perturbation of SGLT1 is associated with cardiomyopathy and cancer. Therefore, both SGLT1 and SGLT2 are potential therapeutic targets. Here we report the development of a non-radioactive cell-based method for the screening of SGLT inhibitors using COS-7 cells transiently expressing human SGLT1 (hSGLT1), CHO-K1 cells stably expressing human SGLT2 (hSGLT2), and a novel fluorescent D-glucose analogue 1-NBDG as a substrate. Our data indicate that 1-NBDG can be a good replacement for the currently used isotope-labeled SGLT substrate, 14C-AMG. The Michaelis constant of 1-NBDG transport (0.55 mM) is similar to that of D-glucose (0.51 mM) and AMG (0.40 mM) transport through hSGLT1. The IC50 values of a SGLT inhibitor phlorizin for hSGLT1 obtained using 1-NBDG and 14C-AMG were identical (0.11 μM) in our cell-based system. The IC50 values of dapagliflozin, a well-known selective SGLT2 inhibitor, for hSGLT2 and hSGLT1 determined using 1-NBDG were 1.86 nM and 880 nM, respectively, which are comparable to the published results obtained using 14C-AMG. Compared to 14C-AMG, the use of 1-NBDG is cost-effective, convenient and potentially more sensitive. Taken together, a non-radioactive system using 1-NBDG has been validated as a rapid and reliable method for the screening of SGLT1 and SGLT2 inhibitors.

Biological Activity I Assay Protocols (From Reference)
Targets
Fluorescent dye
ln Vitro
1-NBDG was used as a fluorescent glucose analogue to conduct glucose uptake assay in COS-7 cells transiently transfected with pcDNAhSGLT1 and CHO–K1 cells stably expressing hSGLT2 for the screening of SGLT1 and SGLT2 inhibitors, respectively. Here we demonstrated that it was also feasible to use COS-7 cells transiently transfected with pcDNAhSGLT2 (hSGLT2/COS-7) for the screening of SGLT2 inhibitors. The method was also extended from 24-well format to 96-well format suitable for high-throughput screening.The validated method using 1-NBDG was applied to test 195 crude methanol extracts from approximately 60 species of plants in the Lauraceae family in search of novel natural SGLT inhibitors and two potent natural SGLT1 and SGLT2 inhibitors were identified from the leaves of Cinnamomum macrostemon (Yang et al., manuscript in preparation). The IC50 values of these two compounds (I and II) were in the nanomolar range and comparable to phlorizin, the most potent natural SGLT inhibitor with IC50 of 110 ± 10.2 nM for SGLT1 and 9.65 ± 1.83 nM for SGLT2 in our assay system[1].
Glucose is an important energy source for cells. Glucose transport is mediated by two types of glucose transporters: the active sodium-coupled glucose cotransporters (SGLTs), and the passive glucose transporters (GLUTs). Development of an easy way to detect glucose uptake by the cell can be valuable for research. 1-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-1-deoxy-d-glucose (1-NBDG) is a newly synthesized fluorescent glucose analogue. Unlike 2-NBDG, which is a good substrate of GLUTs but not SGLTs, 1-NBDG can be transported by both GLUTs and SGLTs. Thus, 1-NBDG is useful for the screening of SGLT1 and SGLT2 inhibitors. Here we further characterized 1-NBDG and compared it with 2-NBDG. The fluorescence of both 1-NBDG and 2-NBDG was quenched under alkaline conditions, but only 1-NBDG fluorescence could be restored upon neutralization. HPLC analysis revealed that 2-NBDG was decomposed leading to loss of fluorescence, whereas 1-NBDG remained intact in a NaOH solution. Thus, after cellular uptake, 1-NBDG fluorescence can be detected on a plate reader simply by cell lysis in a NaOH solution followed by neutralization with an HCl solution. The fluorescence stability of 1-NBDG was stable for up to 5 h once cells were lysed; however, similar to 2-NBDG, intracellular 1-NBDG was not stable and the fluorescence diminished substantially within one hour. 1-NBDG uptake could also be detected at the single cell level and inhibition of 1-NBDG uptake by SGLT inhibitors could be detected by flow cytometry. Furthermore, 1-NBDG was successfully used in a high-throughput cell-based method to screen for potential SGLT1 and SGLT2 inhibitors. The SGLT inhibitory activities of 67 flavonoids and flavonoid glycosides purified from plants were evaluated and several selective SGLT1, selective SGLT2, as well as dual SGLT1/2 inhibitors were identified. Structure-activity relationship analysis revealed that glycosyl residues were crucial since the aglycon showed no SGLT inhibitory activities. In addition, the sugar inter-linkage and their substitution positions to the aglycon affected not only the inhibitory activities but also the selectivity toward SGLT1 and SGLT2[1].
Enzyme Assay
Determination of the stability of 1-NBDG and 2-NBDG under alkaline, acidic conditions or at different pH. [1]
1-NBDG or 2-NBDG was diluted in 0.2 N NaOH, 0.2 N HCl or 20 mM Tris buffers with pH values of 6.8, 7.5, 8.0, 8.8 and 9.8. Fluorescence was detected in a black 96-well plate using a SpectraMax Paradigm Multi-Mode Microplate Reader (Molecular Devices) at an excitation wavelength of 458 nm and an emission wavelength of 528 nm (458/528 nm) for 1-NBDG and 475/550 nm for 2-NBDG.
HPLC analysis[1]
Mightysil RP-18 GP column was used for HPLC analysis and the mobile phase was a gradient of water and acetonitrile from 100% water at 4 min to 100% acetonitrile at 30 min with a flow rate of 1 mL/min. Ten microliters of samples were injected and detected by a UV/Vis detector (set at 475 nm).
Determination of intracellular stability of 1-NBDG and 2-NBDG[1]
SCC131 cells were seeded into 24-well plates at 1 × 105 cells/well and subjected to glucose uptake assay the following day. Cells were rinsed twice with 500 μL of warm choline buffer, followed by incubation with 200 μL of 160 μM 1-NBDG or 2-NBDG in sodium buffer for 2 h. Cells were then washed twice with warm choline buffer, kept in 500 μL PBS at 37 °C in the CO2 incubator for 0–5 h and lysed in 600 μL of a neutral buffer containing 1% sodium deoxycholate, 1% NP-40, 40 mM KCl and 20 mM Tris–HCl, pH 7.5. One hundred-microliter aliquots of cell lysates were transferred to a black 96-well plate for the detection of fluorescence intensity.
Cell Assay
Cell-based screening method for SGLT1 and SGLT2 inhibitors using 1-NBDG [1]
COS-7 cells were transfected with pcDNAhSGLT1 or pcDNAhSGLT2 as previously described and plated into 96-wells the following day at 3–5 × 104 cells/well. Cells were allowed to attach overnight and reach 100% confluence, then subjected to glucose uptake assay in sodium buffer containing test compounds and 100 or 160 μM 1-NBDG at 37 °C for 1.5 h (SGLT1) or 2 h (SGLT2). Cells in 96-wells were rinsed with 150 μL of warm choline buffer and then incubated with 50 μL of sodium buffer containing 1-NBDG and test compounds. After incubation, cells were washed twice with cold choline buffer, examined under microscope to check cell conditions, then lysed in 75 μL of 0.2 N NaOH, and neutralized with 75 μL of 0.2 N HCl. Lysates (100 μL) were transferred to a black 96-well plate for fluorescence detection. Phlorizin was used as a positive control for SGLT inhibitor and 1-NBDG in choline buffer was used to measure sodium-independent glucose uptake via GLUTs. Cells in sodium buffer without 1-NBDG were used to measure autofluorescence (cell background).
Detection of glucose uptake by flow cytometry[1]
Exponentially growing cells in 6-well plates were rinsed twice with 1 mL of warm choline buffer and then incubated with 500 μL of 100 μM 1-NBDG or 2-NBDG in sodium buffer or choline buffer for 30 min at 37 °C. Cells were then washed 3 times with warm choline buffer and harvested by trypsinization. After centrifugation, cells were resuspended in cold PBS and subjected to flow cytometric analysis by FACSCalibur with an excitation wavelength of 488 nm for FL1 channel. Phlorizin was used to inhibit glucose transport via hSGLT1. Flowing Software 2 was used for quantitative analysis.
References
[1]. Characterization of a fluorescent glucose derivative 1-NBDG and its application in the identification of natural SGLT1/2 inhibitors. J Food Drug Anal. 2021; 29(3): 521–532.
[2]. Development of a novel non-radioactive cell-based method for the screening of SGLT1 and SGLT2 inhibitors using 1-NBDG. Mol Biosyst. 2013 Aug;9(8):2010-20. doi: 10.1039/c3mb70060g.
Additional Infomation
Glucose is an important energy source for cells. Glucose transport is mediated by two types of glucose transporters: the active sodium-coupled glucose cotransporters (SGLTs), and the passive glucose transporters (GLUTs). Development of an easy way to detect glucose uptake by the cell can be valuable for research. 1-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-1-deoxy-d-glucose (1-NBDG) is a newly synthesized fluorescent glucose analogue. Unlike 2-NBDG, which is a good substrate of GLUTs but not SGLTs, 1-NBDG can be transported by both GLUTs and SGLTs. Thus, 1-NBDG is useful for the screening of SGLT1 and SGLT2 inhibitors. Here we further characterized 1-NBDG and compared it with 2-NBDG. The fluorescence of both 1-NBDG and 2-NBDG was quenched under alkaline conditions, but only 1-NBDG fluorescence could be restored upon neutralization. HPLC analysis revealed that 2-NBDG was decomposed leading to loss of fluorescence, whereas 1-NBDG remained intact in a NaOH solution. Thus, after cellular uptake, 1-NBDG fluorescence can be detected on a plate reader simply by cell lysis in a NaOH solution followed by neutralization with an HCl solution. The fluorescence stability of 1-NBDG was stable for up to 5 h once cells were lysed; however, similar to 2-NBDG, intracellular 1-NBDG was not stable and the fluorescence diminished substantially within one hour. 1-NBDG uptake could also be detected at the single cell level and inhibition of 1-NBDG uptake by SGLT inhibitors could be detected by flow cytometry. Furthermore, 1-NBDG was successfully used in a high-throughput cell-based method to screen for potential SGLT1 and SGLT2 inhibitors. The SGLT inhibitory activities of 67 flavonoids and flavonoid glycosides purified from plants were evaluated and several selective SGLT1, selective SGLT2, as well as dual SGLT1/2 inhibitors were identified. Structure-activity relationship analysis revealed that glycosyl residues were crucial since the aglycon showed no SGLT inhibitory activities. In addition, the sugar inter-linkage and their substitution positions to the aglycon affected not only the inhibitory activities but also the selectivity toward SGLT1 and SGLT2.[1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C12H14N4O8
Molecular Weight
342.264
Exact Mass
342.0812
Elemental Analysis
C, 42.11; H, 4.12; N, 16.37; O, 37.40
CAS #
2376921-70-7
Related CAS #
186689-07-6 (2-NBDG)
Appearance
Typically exists as solids at room temperature
LogP
-1.1
tPSA
187Ų
SMILES
C1=C(C2=NON=C2C(=C1)[N+](=O)[O-])N[C@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CO)O)O)O
InChi Key
ZXXYZPVBLJMGPU-UJDFUTJXSA-N
InChi Code
InChI=1S/C12H14N4O8/c17-3-6-9(18)10(19)11(20)12(23-6)13-4-1-2-5(16(21)22)8-7(4)14-24-15-8/h1-2,6,9-13,17-20H,3H2/t6-,9-,10+,11-,12-/m1/s1
Chemical Name
(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[(4-nitro-2,1,3-benzoxadiazol-7-yl)amino]oxane-3,4,5-triol
Synonyms
1-NBDG; 1NBDG; 1 NBDG; EX-A4323A; (2R,3S,4S,5R,6R)-2-(Hydroxymethyl)-6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino)tetrahydro-2H-pyran-3,4,5-triol; 2376921-70-7; 1-NBDG; EX-A4323A; (2R,3S,4S,5R,6R)-2-(Hydroxymethyl)-6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino)tetrahydro-2H-pyran-3,4,5-triol
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.9218 mL 14.6088 mL 29.2176 mL
5 mM 0.5844 mL 2.9218 mL 5.8435 mL
10 mM 0.2922 mL 1.4609 mL 2.9218 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us