Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
DHFR/dihydrofolate reductase
|
---|---|
ln Vitro |
During investigation of folate polyglutamate biosynthesis in rat liver slices utilizing [2-(14)C]folic acid, a folate compound that behaved like a polyglutamate form in the Sephadex G-15 gel filtration system was found to accumulate. Subsequent chromatographic, spectral, chemical, and enzymic studies have indicated that the compound formed in liver slices incubated with [(14)C]folic acid with and without methotrexate was 10-formyl folate. This folate is of interest in that it is the most potent natural inhibitor of dihydrofolate reductase known and may be capable of serving a regulatory function within the cell [1].
|
Cell Assay |
The bioactivity of 10-formyl-7,8-dihydrofolic acid and 10-formyl-folic acid was determined in human leukemia (CCRF-CEM) cells grown in a folate-depleted medium containing methotrexate. Excess 10-formyl-7,8-dihydrofolic acid, (but not 10-formyl folic acid) supported the growth of these cells, but it was less potent than5-formyl-5,6,7,8-tetrahydrofolic acid (a control). 10-formyl-7, 8-dihydrofolic acid (not 10-formyl folic acid) was active as substrate for aminoimidazole carboxamide ribotide transformylase and dihydrofolate reductase. This is the first experimental evidence that 10-formyl-7,8-dihydrofolic acid is a bioactive folate in mammalian cells. These experiments and several other lines of evidence in the literature suggest that 10-formyl-folic acid must be metabolized to bioactive folate by enteric bacteria before it can be utilized by the vertebrate host [2].
|
References | |
Additional Infomation |
10-Formylfolic acid has been reported in Capsicum annuum var. annuum with data available.
|
Molecular Formula |
C20H19N7O7
|
---|---|
Exact Mass |
469.135
|
Elemental Analysis |
C, 51.17; H, 4.08; N, 20.89; O, 23.86
|
CAS # |
134-05-4
|
Related CAS # |
10-Formylfolic acid-d4;461426-41-5
|
PubChem CID |
135405023
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.67g/cm3
|
Index of Refraction |
1.748
|
LogP |
1.114
|
Hydrogen Bond Donor Count |
5
|
Hydrogen Bond Acceptor Count |
10
|
Rotatable Bond Count |
9
|
Heavy Atom Count |
34
|
Complexity |
843
|
Defined Atom Stereocenter Count |
1
|
SMILES |
OC(=O)CCC(C(O)=O)NC(=O)C1=CC=C(C=C1)N(C=O)CC2=NC3=C(N=C2)N=C(N)N=C3=O
|
InChi Key |
UGWUWNVTCLDEOG-ZDUSSCGKSA-N
|
InChi Code |
InChI=1S/C20H19N7O7/c21-20-25-16-15(18(32)26-20)23-11(7-22-16)8-27(9-28)12-3-1-10(2-4-12)17(31)24-13(19(33)34)5-6-14(29)30/h1-4,7,9,13H,5-6,8H2,(H,24,31)(H,29,30)(H,33,34)(H3,21,22,25,26,32)/t13-/m0/s1
|
Chemical Name |
(2S)-2-[[4-[(2-amino-4-oxo-3H-pteridin-6-yl)methyl-formylamino]benzoyl]amino]pentanedioic acid
|
Synonyms |
10-Formylfolic acid; 134-05-4; 10-FORMYLFOLIC ACID (25 MG); N10-Formylfolic Acid; formylfolic acid; 10-Formylpteroylglutamic Acid; 10-Formyl Folic Acid; AI902R79R1;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.