yingweiwo

2-(3,4-Dihydroxyphenyl)chroman-3,5,7-triol

Alias: 2-(3,4-Dihydroxyphenyl)chroman-3,5,7-triol; L-Epicatechin; 13392-26-2; 7295-85-4; (+/-)-Catechin; (+/-)-Epicatechin; 17334-50-8; CHEBI:23053;
Cat No.:V60106 Purity: ≥98%
(±)-Catechin (rel-Cianidanol) is the racemate of catechin.
2-(3,4-Dihydroxyphenyl)chroman-3,5,7-triol
2-(3,4-Dihydroxyphenyl)chroman-3,5,7-triol Chemical Structure CAS No.: 7295-85-4
Product category: COX
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
250mg
Other Sizes

Other Forms of 2-(3,4-Dihydroxyphenyl)chroman-3,5,7-triol:

  • (+)-Catechin Hydrate
  • Cianidanol
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
(±)-Catechin (rel-Cianidanol) is the racemate of catechin. (±)-catechin has two forms (+)-catechin and its enantiomer (-)-catechin. (+)-Catechin regulates cyclooxygenase-1 (COX-1) with IC50 of 1.4 μM. (±)-Catechin has anti-tumor, anti-growth, anti-diabetic, anti-cardiovascular, anti-infectious, hepatoprotective and neuro-protection effects.
Biological Activity I Assay Protocols (From Reference)
Targets
Natural flavonoid in green tea; COX-1/cyclooxygenase-1
ln Vitro
Catechin, the name of which is derived from catechu of the extract of Acacia catechu L., is 3,3’,4’,5,7-pentahydroxyflavan with two steric forms of (+)-catechin (Figure 1) and its enantiomer. In addition, in a broad sense, catechin represents the chemical family name of the compounds derived from catechin. Catechins are distributed in a variety of foods and herbs including tea, apples, persimmons, cacaos, grapes, and berries. This special issue is devoted to information on catechin’s activities related to human health[1].
References

[1]. Mamoru Isemura. Catechin in Human Health and Disease. Molecules. 2019 Feb 1;24(3):528.

Additional Infomation
(+)-catechin is the (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. It has a role as an antioxidant and a plant metabolite. It is an enantiomer of a (-)-catechin.
An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms.
Cianidanol has been reported in Camellia sinensis, Paeonia obovata, and other organisms with data available.
Catechin is a metabolite found in or produced by Saccharomyces cerevisiae.
An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms.
See also: Gallocatechin (has subclass); Crofelemer (monomer of); Bilberry (part of) ...
Tea, a product obtained from the leaves and buds of the plant Camellia sinensis, is one of the richest catechin sources and contains, as the major catechin, (−)-epigallocatechin-3-gallate (EGCG) (Figure 1) which has many beneficial properties for human health such as anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects. A number of human epidemiological and clinical studies on tea have provided evidence for its anticancer benefits and these results have been supported by cell-based and animal experiments, although studies that show conflicting results have also been reported. In addition, detailed molecular mechanisms have been proposed for the action mechanism of EGCG and other catechins. One of the most attractive mechanisms is the one in which reactive oxygen species (ROS) is involved. EGCG is known to have dual actions in relation to ROS as an anti-oxidant and a pro-oxidant. Several lines of evidence have indicated that EGCG can both eliminate ROS by scavenging and enhance ROS production.
With respect to the anticancer effect of green tea catechins, Shirakami and Shimizu provided updated information on diverse mechanisms, including anti-oxidative, pro-oxidative, and anti-inflammatory activities, immune and epigenetic modification, and receptor tyrosine kinase inhibition. They pointed out that it is unclear whether the in vitro observation with high concentrations of EGCG can be directly extrapolated to cancer chemoprevention in animals and humans because of its low bioavailability.[1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H14O6
Molecular Weight
290.26806
Exact Mass
308.089
CAS #
7295-85-4
Related CAS #
(+)-Catechin hydrate;225937-10-0;Catechin;154-23-4
PubChem CID
9064
Appearance
White to off-white solid powder
Melting Point
~200 °C (dec.)
LogP
1.481
Hydrogen Bond Donor Count
5
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
1
Heavy Atom Count
21
Complexity
364
Defined Atom Stereocenter Count
2
SMILES
C1[C@@H]([C@H](OC2=CC(=CC(=C21)O)O)C3=CC(=C(C=C3)O)O)O
InChi Key
PFTAWBLQPZVEMU-DZGCQCFKSA-N
InChi Code
InChI=1S/C15H14O6/c16-8-4-11(18)9-6-13(20)15(21-14(9)5-8)7-1-2-10(17)12(19)3-7/h1-5,13,15-20H,6H2/t13-,15+/m0/s1
Chemical Name
(2R,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol
Synonyms
2-(3,4-Dihydroxyphenyl)chroman-3,5,7-triol; L-Epicatechin; 13392-26-2; 7295-85-4; (+/-)-Catechin; (+/-)-Epicatechin; 17334-50-8; CHEBI:23053;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~125 mg/mL (~430.63 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.4451 mL 17.2253 mL 34.4507 mL
5 mM 0.6890 mL 3.4451 mL 6.8901 mL
10 mM 0.3445 mL 1.7225 mL 3.4451 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us