Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
STING/stimulator of interferon genes [1]
|
---|---|
ln Vitro |
The presence of microbial or self DNA in the cytoplasm of mammalian cells is a danger signal detected by the DNA sensor cyclic-GMP-AMP (cGAMP) synthase (cGAS), which catalyzes the production of cGAMP that in turn serves as a second messenger to activate innate immune responses. Here we show that endogenous cGAMP in mammalian cells contains two distinct phosphodiester linkages, one between 2'-OH of GMP and 5'-phosphate of AMP, and the other between 3'-OH of AMP and 5'-phosphate of GMP. This molecule, termed 2'3'-cGAMP, is unique in that it binds to the adaptor protein STING with a much greater affinity than cGAMP molecules containing other combinations of phosphodiester linkages. The crystal structure of STING bound to 2'3'-cGAMP revealed the structural basis of this high-affinity binding and a ligand-induced conformational change in STING that may underlie its activation[3].
|
ln Vivo |
2',3'-cGAMP is a cyclic A- and G-containing dinucleotide second messenger, which is formed upon cellular recognition of foreign cytosolic DNA as part of the innate immune response. The molecule binds to the adaptor protein STING, which induces an immune response characterized by the production of type I interferons and cytokines. The development of STING-binding molecules with both agonistic as well as antagonistic properties is currently of tremendous interest to induce or enhance antitumor or antiviral immunity on the one hand, or to treat autoimmune diseases on the other hand. To escape the host innate immune recognition, some viruses encode poxin endonucleases that cleave 2',3'-cGAMP. Here we report that dideoxy-2',3'-cGAMP (1) and analogs thereof, which lack the secondary ribose-OH groups, form a group of poxin-stable STING agonists. Despite their reduced affinity to STING, particularly the compound constructed from two A nucleosides, dideoxy-2',3'-cAAMP (2), features an unusually high antitumor response in mice[2].
|
References |
Molecular Formula |
C27H36N10O14P2S2
|
---|---|
Molecular Weight |
850.71
|
Exact Mass |
850.13291
|
CAS # |
2586047-11-0
|
PubChem CID |
162641014
|
Appearance |
Typically exists as solid at room temperature
|
LogP |
-3.7
|
SMILES |
CC(CCC(=O)O)SSCC[C@@H]1[C@H]2COP(=O)(O[C@@H]3[C@@H](COP(=O)(O[C@H]1[C@@H](O2)N4C=NC5=C4N=C(NC5=O)N)O)O[C@H]([C@@H]3O)N6C=NC7=C(N=CN=C76)N)O
|
InChi Key |
IBPLNKRENHFZJM-AYPAWVCOSA-N
|
InChi Code |
InChI=1S/C27H36N10O14P2S2/c1-11(2-3-15(38)39)55-54-5-4-12-13-6-46-53(44,45)51-20-14(49-25(18(20)40)36-9-32-16-21(28)30-8-31-22(16)36)7-47-52(42,43)50-19(12)26(48-13)37-10-33-17-23(37)34-27(29)35-24(17)41/h8-14,18-20,25-26,40H,2-7H2,1H3,(H,38,39)(H,42,43)(H,44,45)(H2,28,30,31)(H3,29,34,35,41)/t11?,12-,13-,14-,18-,19-,20-,25-,26-/m1/s1
|
Chemical Name |
4-[2-[(1R,6R,8R,9R,10S,15S,17R,18R)-17-(2-amino-6-oxo-1H-purin-9-yl)-8-(6-aminopurin-9-yl)-3,9,12-trihydroxy-3,12-dioxo-2,4,7,11,13,16-hexaoxa-3λ5,12λ5-diphosphatricyclo[13.2.1.06,10]octadecan-18-yl]ethyldisulfanyl]pentanoic acid
|
Synonyms |
2',3'-cGAMP-C2-PPA; 2586047-11-0;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.1755 mL | 5.8774 mL | 11.7549 mL | |
5 mM | 0.2351 mL | 1.1755 mL | 2.3510 mL | |
10 mM | 0.1175 mL | 0.5877 mL | 1.1755 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.