yingweiwo

2-D08

Alias: 2-D08; 2D08; 2 D08.
Cat No.:V3201 Purity: ≥98%
2-D08,a synthetic flavone, is a cell permeable inhibitor ofprotein sumoylation that has a unique mechanism of action.
2-D08
2-D08 Chemical Structure CAS No.: 144707-18-6
Product category: SUMO
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

2-D08, a synthetic flavone, is a cell permeable inhibitor of protein sumoylation that has a unique mechanism of action. It is also inhibits Axl, IRAK4, ROS1, MLK4, GSK3β, RET, KDR and PI3Kα with IC50 values of 0.49, 3.9, 5.3, 9.8, 11, 11, 17 and 35 nM respectively in biochemical assays. Protein sumoylation is a dynamic posttranslational modification involved in diverse biological processes during cellular homeostasis and development. Sumoylation has been shown to play a critical role in cancer. 2-D08 showed anti-aggregatory and neuroprotective effect and may be used for the treatment of related diseases.

Biological Activity I Assay Protocols (From Reference)
Targets
Axl(IC50= 0.49 nM)
ln Vitro
2-D08, a synthetic flavone, is a cell permeable inhibitor of protein sumoylation that has a unique mechanism of action. It is also inhibits Axl, IRAK4, ROS1, MLK4, GSK3β, RET, KDR and PI3Kα with IC50 values of 0.49, 3.9, 5.3, 9.8, 11, 11, 17 and 35 nM respectively in biochemical assays. Protein sumoylation is a dynamic posttranslational modification involved in diverse biological processes during cellular homeostasis and development. Sumoylation has been shown to play a critical role in cancer. 2-D08 showed anti-aggregatory and neuroprotective effect and may be used for the treatment of related diseases.
ln Vivo
In vivo injection of SUMO inhibitor 2-D08 into α2−/− and morphology analysis for gephyrin cluster colocalization with γ2 GABAARs; (right panel) quantification shows significant increase in gephyrin clustering along with γ2 GABAAR on the ipsi- compared with the contra-lateral hemisphere. Injection of SUMO pathway inhibitor 2-D08 (30 μM) or saline into α2−/− mice (n=3) on one hemisphere near the hippocampal area. Twenty-four hours after injection, we analysed for gephyrin and γ2 GABAAR clusters in both ipsi- and contralateral hemispheres. One could see inflammation using antibody against CD68, a marker for microglia, near the lesion caused by the 2-D08 injection, but not saline.
Enzyme Assay
2-D08 is a cell permeable, mechanistically unique inhibitor of protein sumoylation. It is also inhibits Axl, IRAK4, ROS1, MLK4, GSK3β, RET, KDR and PI3Kα with IC50 values of 0.49, 3.9, 5.3, 9.8, 11, 11, 17 and 35 nM respectively in biochemical assays. IC50 values of the Axl kinase inhibitor (2D08) are determined using kinase-mediated phosphorylation of poly-GAT by AlphaScreen luminescence detection technology. The inhibitor is tested at eight points of dilution in duplicate.
Cell Assay
Human lung multi-potent cells at passage 5 are plated at a density of 250 000 cells per well in six-well plates with growth medium. After 24 h, multi-potent cells are incubated with DMEM+0.5% BSA+penicillin/streptomycin containing 0.1% DMSO (vehicle) or 2D08 (0.1, 1, 10 μM) for 3 h in a humidified 5% CO2 incubator at 37℃. These cells are trypsinized and seeded at 20 000 cells per well in three replicates on 12-well cell culture transwell inserts with 8 μm pore size with DMEM+0.5% BSA+penicillin/streptomycin. Lower transwell chambers contained DMEM+10% FBS+penicillin/streptomycin are used to allow cells to migrate. 0.1% DMSO or 2D08 is added to corresponding upper and lower transwell chambers. After 16 h, non-migrated cells are removed by cotton swabs. Migrated cells are fixed with 4% PFA, permeabilized with methanol and stained with crystal violet. The field-images per transwell are taken by an inverted light microscope.
Animal Protocol
Dissolved in 30 μM (10 μl); injected on one hemisphere near the hippocampal area
α2 / mice (8 to 10 weeks old)
References

[1]. Bioorg Med Chem Lett.2014 Feb 15;24(4):1094-7

[2]. Nat Commun.2016 Nov 7;7:13365

[3]. Lab Invest.2017 Sep;97(9):1047-1062.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H10O5
Molecular Weight
270.24
Exact Mass
270.052
Elemental Analysis
C, 66.67; H, 3.73; O, 29.60
CAS #
144707-18-6
Related CAS #
144707-18-6
PubChem CID
22507438
Appearance
Light yellow to yellow solid powder
Density
1.5±0.1 g/cm3
Boiling Point
517.9±50.0 °C at 760 mmHg
Flash Point
201.7±23.6 °C
Vapour Pressure
0.0±1.4 mmHg at 25°C
Index of Refraction
1.732
LogP
2.77
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
1
Heavy Atom Count
20
Complexity
419
Defined Atom Stereocenter Count
0
SMILES
C1=CC2C(C=C(C3=C(O)C(O)=C(O)C=C3)OC=2C=C1)=O
InChi Key
JJAXTFSPCLZPIW-UHFFFAOYSA-N
InChi Code
InChI=1S/C15H10O5/c16-10-6-5-9(14(18)15(10)19)13-7-11(17)8-3-1-2-4-12(8)20-13/h1-7,16,18-19H
Chemical Name
2-(2,3,4-trihydroxyphenyl)-4H-1-benzopyran-4-one
Synonyms
2-D08; 2D08; 2 D08.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : 54~150 mg/mL ( 199.82~555.06 mM )
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (9.25 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (9.25 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (9.25 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.7004 mL 18.5021 mL 37.0041 mL
5 mM 0.7401 mL 3.7004 mL 7.4008 mL
10 mM 0.3700 mL 1.8502 mL 3.7004 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Partial HPLC chromatogram of a commercial sample of 2-D08 containing three components. B: Structures of components identified from commercial samples.[1].Bioorg Med Chem Lett.2014 Feb 15;24(4)
  • A: Synthesis of compound 1. B: Synthesis of 2-D08 (compound 2). C: Wessely-Moser-type isomerization observed during deprotection of 8 with aqueous HBr. Abbreviations: pyr = pyridine, EDCI = 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, DMAP = 4-dimethylaminopyridine.[1].Bioorg Med Chem Lett.2014 Feb 15;24(4)
  • Inhibitory activity of selected compounds in an endpoint biochemical assay. [1].Bioorg Med Chem Lett.2014 Feb 15;24(4)
Contact Us