yingweiwo

2-DG

Alias: 2-deoxy-D-glucose; Deoxyglucose; 154-17-6; 2-Deoxy-D-arabino-hexose; 2-Desoxy-D-glucose; 2-DG; (3R,4S,5R)-3,4,5,6-tetrahydroxyhexanal; 2-Deoxy-D-mannose;
Cat No.:V9371 Purity: ≥98%
2-Deoxy-D-glucose is a glucose analog and a glucose metabolism inhibitor that can suppress glycolysis by acting on hexokinase.
2-DG
2-DG Chemical Structure CAS No.: 154-17-6
Product category: HSV
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1g
5g
10g
Other Sizes

Other Forms of 2-DG:

  • 2-Deoxy-D-glucose-d1
  • 2-Deoxy-D-glucose-13C
  • 2-Deoxy-D-glucose-13C-1
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Purity: ≥98%

Product Description
2-Deoxy-D-glucose is a glucose analog and a glucose metabolism inhibitor that can suppress glycolysis by acting on hexokinase.
Biological Activity I Assay Protocols (From Reference)
Targets
Glucose metabolism; glycolysis; hexokinase; HSV-1; Antimetabolites; Antiviral Agents
ln Vitro
In MCF-7 cells, 2-Deoxy-D-glucose (2-DG), 4, 8, or 16 mM, dramatically decreased ATP levels in a dose- and time-dependent manner that was comparable to the effect of 2-DG on cell growth. exposure to 4, 8 or 16 mM 2-Deoxy-D-glucose 1, 3 or for 5 days in a way that depends on the dose and the amount of time [1]. When 2-DG is administered, pentose phosphate pathway (PPP) responders are upregulated, and 6-phosphate endpoint dehydrogenase produces more NADPH. The 2-DG reduced form of glutathione is elevated in NB4 cells due to an increase in NADPH and an upregulation of glutathione synthetase expression [3].
ln Vivo
2-Deoxy-D-glucose (0.03%, w/w) postponed the possible beginning of breast cancer and led to a statistically significant 7% reduction in final body weight [1]. 2. During extraction, 2-Deoxy-D-glucose (3 mmol/kg, iv) is lowered in a dose-dependent manner [2].
Note: Despite the numerous preclinical and clinical studies, the use of 2-DG in cancer and viral treatment has been limited. Its rapid metabolism and short half-life (according to Hansen et al., after treatment with infusion of 50 mg/kg2-DG, its plasma half-life was only 48 min), make 2-DG a relatively poor drug candidate. Moreover, 2-DG must be given at relatively high concentrations (≥5 mmol/L) to compete with blood glucose. According to Stein et al., the dose of 45 mg/kg received orally on days 1–14 was defined as safe because patients did not experience any dose-limiting toxicities. Notably, at the dose of 60 mg/kg, two patients experienced dose-limiting toxicity of grade 3–asymptomatic QTc prolongation. According to former studies published by Burckhardt et al. and Stalder et al., among patients exposed to 2-DG, non-specific T wave flattening and QT prolongation, without any event of severe arrhythmia, developed.[4]
Enzyme Assay
ATP assay. The effect of 2-DG on ATP level in the cells was determined using an ENLITEN ATP assay kit (Promega Corporation, Kadison, WI), the bioluminescence was detected using a TD 20/20 luminometer (Turner Biosystem, Sunnyvale, CA), and the amount of ATP per well was standardized by the cell number estimated by crystal violet method described above.[1]
Cell Assay
Using MCF-7 human breast cancer cells to investigate the signaling pathways perturbed by disruption of glucose metabolism, 2-DG reduced cell growth and intracellular ATP in a dose- and time-dependent manner (P < 0.01). Treatment with 2-DG increased levels of phosphorylated AMP-activated protein kinase and Sirt-1 and reduced phosphorylated Akt (P < 0.05). These studies support the hypothesis that DER inhibits carcinogenesis, in part, by limiting glucose availability and that energy metabolism is a target for the development of ERMA for chemoprevention.[1]
Animal Protocol
For the carcinogenesis study, ninety 21-day-old female Sprague-Dawley rats were injected i.p. with 50 mg of 1-methyl-1-nitrosourea per kilogram of body weight. Following injection, animals were ad libitum fed AIN-93G diet containing 0.00%, 0.02%, or 0.03% (w/w) 2-DG for 5 weeks. 2-DG decreased the incidence and multiplicity of mammary carcinomas and prolonged cancer latency (P < 0.05). The 0.02% dose of 2-DG had no effect on circulating levels of glucose, insulin, insulin-like growth factor-I, IGF binding protein-3, leptin, or body weight gain. [1]
References
[1]. Zhu Z, et al. 2-Deoxyglucose as an energy restriction mimetic agent: effects on mammary carcinogenesis and on mammary tumor cell growth in vitro. Cancer Res. 2005 Aug 1;65(15):7023-30.
[2]. Ueyama A, et al. Nonradioisotope assay of glucose uptake activity in rat skeletal muscle using enzymatic measurement of 2-deoxyglucose 6-phosphate in vitro and in vivo. Biol Signals Recept. 2000 Sep-Oct;9(5):267-74.
[3]. Miwa H, et al. Leukemia cells demonstrate a different metabolic perturbation provoked by 2-deoxyglucose. Oncol Rep. 2013 May;29(5):2053-7
[4]. Int J Mol Sci. 2020 Jan; 21(1): 234.
Additional Infomation
2-deoxy-D-glucose is a natural product found in Streptomyces nigra with data available. LOTUS - the natural products occurrence database
2-Deoxy-D-glucose is a non-metabolizable glucose analog in which the hydroxyl group at position 2 of glucose is replaced by hydrogen, with potential glycolysis inhibiting and antineoplastic activities. Although the exact mechanism of action has yet to be fully elucidated, upon administration of 2-deoxy-D-glucose (2-DG), this agent competes with glucose for uptake by proliferating cells, such as tumor cells. 2-DG inhibits the first step of glycolysis and therefore prevents cellular energy production, which may result in decreased tumor cell proliferation. NCI Thesaurus (NCIt)
2-deoxy-D-glucose is a metabolite found in or produced by Saccharomyces cerevisiae. Yeast Metabolome Database (YMDB)
2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity.
Absorption, Distribution and Excretion: WHEN THE RENAL EXCRETION OF 2-DEOXYGLUCOSE WAS STUDIED IN DOGS AND RATS BY CONVENTIONAL CLEARANCE AND STOP-FLOW TECHNIQUES, IT WAS REABSORBED BY THE RENAL TUBULES AT AN AVG OF 68-89% OF THE FILTERED LOADS AND THE REABSORPTION SITE WAS IN THE PROXIMAL TUBULES.
Metabolism / Metabolites: 2-DEOXY-D-GLUCOSE WAS CONVERTED TO THE 6-PHOSPHATE IN MOUSE TESTIS AND LIVER AFTER IP INJECTION OF 50 MG/KG BODY WT DAILY FOR 7 DAYS.
View More

Uses: 2-DEOXYGLUCOSE IS A GLUCOSE ANTIMETABOLITE, INHIBITING GLYCOLYSIS; IT IS A WIDELY USED RESEARCH TOOL TO STUDY GLUCOSE-DEPENDENT OR -MEDIATED REACTIONS.
MEDICATION (VET): TOPICAL TREATMENT OF HERPES GENITALIS IN FEMALE GUINEA PIGS WITH 2-DEOXY-D-GLUCOSE IN EITHER AGAROSE GELS OR MICONAZOLE NITRATE OINTMENT FAILED TO PREVENT DEVELOPMENT OF GENITAL LESIONS OR TO REDUCE THE MEAN TITERS OF RECOVERABLE VIRUS IN VAGINAL SWABS FROM INFECTED ANIMALS.


Dietary energy restriction (DER) is a potent inhibitor of carcinogenesis, but chronic DER in human populations is difficult to sustain. Consequently, interest exists in identifying energy restriction mimetic agents (ERMAs), agents that provide the health benefits of DER without reducing caloric intake. The selection of a candidate ERMAs for this study was based on evidence that DER inhibits carcinogenesis by limiting glucose availability. The study objective was to determine if 2-deoxyglucose (2-DG), a glucose analogue that blocks its metabolism, would inhibit mammary carcinogenesis. Pilot studies were done to establish a dietary concentration of 2-DG that would not affect growth. For the carcinogenesis study, ninety 21-day-old female Sprague-Dawley rats were injected i.p. with 50 mg of 1-methyl-1-nitrosourea per kilogram of body weight. Following injection, animals were ad libitum fed AIN-93G diet containing 0.00%, 0.02%, or 0.03% (w/w) 2-DG for 5 weeks. 2-DG decreased the incidence and multiplicity of mammary carcinomas and prolonged cancer latency (P < 0.05). The 0.02% dose of 2-DG had no effect on circulating levels of glucose, insulin, insulin-like growth factor-I, IGF binding protein-3, leptin, or body weight gain. Using MCF-7 human breast cancer cells to investigate the signaling pathways perturbed by disruption of glucose metabolism, 2-DG reduced cell growth and intracellular ATP in a dose- and time-dependent manner (P < 0.01). Treatment with 2-DG increased levels of phosphorylated AMP-activated protein kinase and Sirt-1 and reduced phosphorylated Akt (P < 0.05). These studies support the hypothesis that DER inhibits carcinogenesis, in part, by limiting glucose availability and that energy metabolism is a target for the development of ERMA for chemoprevention.[1]
We investigated a nonradioisotope method for the evaluation of glucose uptake activity using enzymatic measurement of 2-deoxyglucose 6-phosphate (2DG6P) content in isolated rat soleus muscle in vitro and in vivo. The 2DG6P content in isolated rat soleus muscle after incubation with 2-deoxyglucose (2DG) was increased in a dose-dependent manner by insulin (ED(50) = 0.6 mU/ml), the maximum response being about 5 times that of the basal content in vitro. This increment was completely abolished by wortmannin (100 nM), with no effect on basal 2DG6P content. An insulin-mimetic compound, vanadium, also increased 2DG6P content in a dose-dependent manner. In isolated soleus muscle of Zucker fa/fa rats, well known as an insulin-resistant model, insulin did not increase 2DG6P content. The 2DG6P content in rat soleus muscle increased after 2DG (3 mmol/kg) injection in vivo, and conversely, the 2DG concentration in plasma was decreased in a dose-dependent manner by insulin (ED(50) = 0.11 U/kg). The maximum response of the accumulation of 2DG6P in soleus muscle was about 4 times that of the basal content. This method could be useful for evaluating glucose uptake (transport plus phosphorylation) activity in soleus muscle in vitro and in vivo without using radioactive materials.[2]
The shift in energy metabolism from oxidative phosphorylation to glycolysis can serve as a target for the inhibition of cancer growth. Here, we examined the metabolic changes induced by 2-deoxyglucose (2-DG), a glycolysis inhibitor, in leukemia cells by metabolome analysis. NB4 cells mainly utilized glucose as an energy source by glycolysis and oxidative phosphorylation in mitochondria, since metabolites in the glycolytic pathway and in the tricarboxylic acid (TCA) cycle were significantly decreased by 2-DG. In THP-1 cells, metabolites in the TCA cycle were not decreased to the same extent by 2-DG as in NB4 cells, which indicates that THP-1 utilizes energy sources other than glucose. TCA cycle metabolites in THP-1 cells may be derived from acetyl-CoA by fatty acid β-oxidation, which was supported by abundant detection of carnitine and acetylcarnitine in THP-1 cells. 2-DG treatment increased the levels of pentose phosphate pathway (PPP) metabolites and augmented the generation of NADPH by glucose-6-phosphate dehydrogenase. An increase in NADPH and upregulation of glutathione synthetase expression resulted in the increase in the reduced form of glutathione by 2-DG in NB4 cells. We demonstrated that a combination of 2-DG and inhibition of PPP by dehydroepiandrosterone (DHEA) effectively suppressed the growth of NB4 cells. The replenishment of the TCA cycle by fatty acid oxidation by carnitine palmitoyltransferase in THP-1 cells, treated by 2-DG, might be regulated by AMPK, as the combination of 2-DG and inhibition of AMPK by compound C potently suppressed the growth of THP-1 cells. Although 2-DG has been effective in preclinical and clinical studies, this treatment has not been fully explored due to concerns related to potential toxicities such as brain toxicity at high doses. We demonstrated that a combination of 2-DG and DHEA or compound C at a relatively low concentration effectively inhibits the growth of NB4 and THP-1 cells, respectively. These observations may aid in the identification of appropriate combinations of metabolic inhibitors at low concentrations which do not cause toxicities.[3]

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C6H12O5
Molecular Weight
164.1565
Exact Mass
164.07
Elemental Analysis
C, 43.90; H, 7.37; O, 48.73
CAS #
154-17-6
Related CAS #
2-Deoxy-D-glucose-d;188004-07-1;2-Deoxy-D-glucose-13C;201612-55-7;2-Deoxy-D-glucose-13C-1;119897-50-6
PubChem CID
108223
Appearance
White to off-white solid powder
Density
1.4±0.1 g/cm3
Boiling Point
456.7±45.0 °C at 760 mmHg
Melting Point
146-147ºC
Flash Point
244.1±25.2 °C
Vapour Pressure
0.0±2.5 mmHg at 25°C
Index of Refraction
1.534
Source
Endogenous metabolite
LogP
-2.9
tPSA
98Ų
SMILES
O([H])[C@]([H])([C@@]([H])(C([H])([H])O[H])O[H])[C@@]([H])(C([H])([H])C([H])=O)O[H]
InChi Key
VRYALKFFQXWPIH-PBXRRBTRSA-N
InChi Code
InChI=1S/C6H12O5/c7-2-1-4(9)6(11)5(10)3-8/h2,4-6,8-11H,1,3H2/t4-,5-,6+/m1/s1
Chemical Name
2-Deoxy-D-arabinohexose
Synonyms
2-deoxy-D-glucose; Deoxyglucose; 154-17-6; 2-Deoxy-D-arabino-hexose; 2-Desoxy-D-glucose; 2-DG; (3R,4S,5R)-3,4,5,6-tetrahydroxyhexanal; 2-Deoxy-D-mannose;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ≥ 24 mg/mL (~146.20 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 130 mg/mL (791.91 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication.

Solubility in Formulation 2: ~130 mg/mL (~792 mM) in PBS

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 6.0916 mL 30.4581 mL 60.9162 mL
5 mM 1.2183 mL 6.0916 mL 12.1832 mL
10 mM 0.6092 mL 3.0458 mL 6.0916 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
A Controlled Human Rhinovirus Infection Study of 2-Deoxy-D-Glucose in Healthy Adults
CTID: NCT06375772
Phase: Phase 2
Status: Recruiting
Date: 2024-04-19
Pharmacokinetics Study of Oral 2-Deoxy-D-Glucose (2DG) in Subjects With a Confirmed Diagnosis of Epilepsy
CTID: NCT05605301
Phase: Phase 2
Status: Completed
Date: 2024-02-07
Dose Escalation Trial of 2-Deoxy-D-Glucose (2DG) in Subjects With Advanced Solid Tumors
CTID: NCT00096707
Phase: Phase 1
Status: Completed
Date: 2009-04-29
Contact Us