Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
Other Sizes |
|
2',3'-cGAMP (2'-3'-cyclic GMP-AMP) is an endogenous cGAMP molecule found in mammalian cells, it binds to STING with high affinity and is a potent inducer of interferon-β (IFNβ). contains two distinct phosphodiester linkages, one between 2′-OH of GMP and 5′-phosphate of AMP, and the other between 3′-OH of AMP and 5′-phosphate of GMP. 2',3'-cGAMP is produced in mammalian cells in response to DNA in the cytoplasm and binds to STING with a high affinity and is a potent inducer of interferon-β (IFNβ).
Targets |
STING/stimulator of interferon genes; IFNβ
|
---|---|
ln Vitro |
There are two distinct phosphodiester bonds found in 2',3'-cGAMP (2'-3'-cyclic GMP-AMP); one is between the 2'-OH of GMP and the 5'-phosphate of AMP, and the other is between the 3'-OH of GMP and the 5'-phosphate of AMP [1].
|
Enzyme Assay |
Enzymatic Synthesis and Purification of cGAMP[1]
To generate natural cGAMP using the enzyme cGAS, a reaction containing 20mM Tris-Cl, pH7.5, 5mM MgCl2, 10mM CoCl2, 0.01mg/ml herring testis DNA, 1mM ATP, 1mM GTP, and 0.1μM recombinant SUMO-tagged human cGAS (aa147–522) was incubated at 37°C for 1hr. The mixture was fractionated on a Hitrap Q column using a linear 0–0.5M NaCl gradient; a UV peak corresponding to cGAMP was collected and loaded onto a C18 column (201TP510, 1cmX25cm), and eluted with a linear 0–100% methanol gradient. Isothermal titration calorimetry (ITC)[1] Isothermal titration calorimetry (ITC) was employed to measure the binding affinities between STING and cGAMP isomers or c-di-GAMP using a VP-ITC microcalorimeter (GE Healthcare). The protein and the ligand concentrations are shown in Figure 2D. The titrations were performed at 20°C in the buffer containing 25 mM Hepes, pH 7.8, 150 mM NaCl. 32 injections were performed with 4 minutes spacing time. The titration traces were integrated by NITPIC(Keller et al., 2012) and then the curves were fitted by SEDFIT(Houtman et al., 2007). The figures were prepared using GUSSI (http://biophysics.swmed.edu/MBR/software.html). |
Cell Assay |
Preparation of Endogenous cGAMP[1]
Endogenous cGAMP was prepared from DNA transfected L929 and THP-1 cells, respectively. After HT-DNA transfection for 4 hours, about 3× 107 cells were lysed in hypotonic buffer [10mM Tris-HCl, pH7.4, 10mM KCl, 1.5mM MgCl2]. The lysates were heated at 95°C for 5 min and centrifuged again at 17,000g for 10 min to remove denatured proteins. The heat-resistant supernatant was fractionated on a C-18 column (Eclipse Plus 4.6×30 mm, 3.5μm) equilibrated with 0.1% formic acid and eluted with a linear gradient of 0–100% methanol. The presence of cGAMP in each fraction was monitored by activity assay (Wu et al., 2013), and the fraction with peak activity was used for further MS and MS/MS analysis. |
References | |
Additional Infomation |
2'-3'-cGAMP is a cyclic purine dinucleotide that consists of AMP and GMP units cyclised via 3',5'- and 2',5'-linkages respectively. It is a cyclic purine dinucleotide, a guanyl ribonucleotide and an adenyl ribonucleotide. It is functionally related to a Gp[2'-5']Ap[3']. It is a conjugate acid of a 2'-3'-cGAMP(2-).
|
Molecular Formula |
C20H24N10O13P2
|
---|---|
Molecular Weight |
674.4113
|
Exact Mass |
674.099
|
Elemental Analysis |
C, 35.62; H, 3.59; N, 20.77; O, 30.84; P, 9.19
|
CAS # |
1441190-66-4
|
Related CAS # |
2',3'-cGAMP sodium;2734858-36-5
|
PubChem CID |
135564529
|
Appearance |
White to off-white solid powder
|
Density |
2.6±0.1 g/cm3
|
Index of Refraction |
2.071
|
LogP |
-5.9
|
Hydrogen Bond Donor Count |
7
|
Hydrogen Bond Acceptor Count |
19
|
Rotatable Bond Count |
2
|
Heavy Atom Count |
45
|
Complexity |
1300
|
Defined Atom Stereocenter Count |
8
|
SMILES |
C1[C@@H]2[C@H]([C@H]([C@@H](O2)N3C=NC4=C3N=C(NC4=O)N)OP(=O)(OC[C@@H]5[C@H]([C@H]([C@@H](O5)N6C=NC7=C(N=CN=C76)N)O)OP(=O)(O1)O)O)O
|
InChi Key |
XRILCFTWUCUKJR-INFSMZHSSA-N
|
InChi Code |
InChI=1S/C20H24N10O13P2/c21-14-8-15(24-3-23-14)29(4-25-8)18-11(32)12-7(41-18)2-39-45(36,37)43-13-10(31)6(1-38-44(34,35)42-12)40-19(13)30-5-26-9-16(30)27-20(22)28-17(9)33/h3-7,10-13,18-19,31-32H,1-2H2,(H,34,35)(H,36,37)(H2,21,23,24)(H3,22,27,28,33)/t6-,7-,10-,11-,12-,13-,18-,19-/m1/s1
|
Chemical Name |
2-amino-9-[(1R,6R,8R,9R,10S,15R,17R,18R)-8-(6-aminopurin-9-yl)-3,9,12,18-tetrahydroxy-3,12-dioxo-2,4,7,11,13,16-hexaoxa-3λ5,12λ5-diphosphatricyclo[13.2.1.06,10]octadecan-17-yl]-1H-purin-6-one
|
Synonyms |
cyclic GMP-AMP; 2'3'-Cgamp; Cyclic guanosine monophosphate-adenosine monophosphate; 1441190-66-4; cGAMP(2'-5'); Cyclic Gp(2'-5')Ap(3'-5'); CHEBI:75947; 2',3'-cGAMP;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
H2O : ≥ 50 mg/mL (~74.14 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.4828 mL | 7.4139 mL | 14.8278 mL | |
5 mM | 0.2966 mL | 1.4828 mL | 2.9656 mL | |
10 mM | 0.1483 mL | 0.7414 mL | 1.4828 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.