yingweiwo

(2R,5S)-Ritlecitinib

Cat No.:V51531 Purity: ≥98%
(2R,5S)-Ritlecitinib (2R,5S)-PF-06651600) is a potent and specific JAK3 conjugate (IC50=144.8 nM).
(2R,5S)-Ritlecitinib
(2R,5S)-Ritlecitinib Chemical Structure CAS No.: 1792180-79-0
Product category: JAK
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of (2R,5S)-Ritlecitinib:

  • Ritlecitinib (PF-06651600)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
(2R,5S)-Ritlecitinib (2R,5S)-PF-06651600) is a potent and specific JAK3 conjugate (IC50=144.8 nM). For more details, check and find patent US20150158864A1, Example 68.
Biological Activity I Assay Protocols (From Reference)
Targets
JAK3 (IC50 = 145 nM)
ln Vitro
Ritlecitinib is a powerful JAK3-selective inhibitor that has an IC50 of 33.1 nM for inhibiting JAK3 kinase activity, but no activity (IC50>10,000 nM) against JAK1, JAK2, and TYK2. With IC50 values of 244, 340, 407, and 266 nM, respectively, ritlecitinib suppresses the phosphorylation of STAT5 induced by IL-2, IL-4, IL-7, and IL-15. With an IC50 of 355 nM, ritlecitinib also prevents IL-21-induced STAT3 phosphorylation. Ritlecitinib inhibits Th1 and Th17 differentiation (measured by IFNγ after 5 days under Th1 circumstances and IL-17 production after 6 days under Th17 settings) in T-cell differentiation assays, according to functional assessment (IC50 values: 30 nM and 167 nM, respectively). Additionally, ritlecitinib inhibits Th1 and Th17 function as demonstrated by the suppression of IFNγ production (IC50=48 nM) and IL-17 production (IC50=269 nM) in cells that have undergone prior differentiation and resting before PF-06651600 treatment[1].
ln Vivo
Ritlecitinib reduces paw swelling in the rat adjuvant-induced arthritis (AIA) model, with an unbound EC50 of 169 nM. In the experimental autoimmune encephalomyelitis (EAE) mouse model, ritlecitinib, administered either therapeutically at 30 or 100 mg/kg or prophylactically at 20 or 60 mg/kg, significantly reduces the severity of the disease. Ritlecitinib's effectiveness in treating inflammatory and autoimmune diseases in these two rodent models shows that JAK3-selective inhibition alone may be enough to modify disease in humans[1].
References
[1]. Telliez JB, et al. Discovery of a JAK3-Selective Inhibitor: Functional Differentiation of JAK3-Selective Inhibition over pan-JAK or JAK1-Selective Inhibition. ACS Chem Biol. 2016 Dec 16;11(12):3442-3451.
[2]. Atli Thorarensen, et al. Pyrrolo[2,3-d]pyrimidinyl, pyrrolo[2,3-b]pyrazinyl and pyr-rolo[2,3-d]pyridinyl acrylamides. US20150158864A1.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H19N5O
Exact Mass
285.158
CAS #
1792180-79-0
Related CAS #
Ritlecitinib;1792180-81-4
PubChem CID
118116220
Appearance
White to light yellow solid
LogP
2.1
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
3
Heavy Atom Count
21
Complexity
402
Defined Atom Stereocenter Count
2
SMILES
C[C@@H]1CC[C@@H](CN1C(=O)C=C)NC2=NC=NC3=C2C=CN3
InChi Key
CBRJPFGIXUFMTM-MNOVXSKESA-N
InChi Code
InChI=1S/C15H19N5O/c1-3-13(21)20-8-11(5-4-10(20)2)19-15-12-6-7-16-14(12)17-9-18-15/h3,6-7,9-11H,1,4-5,8H2,2H3,(H2,16,17,18,19)/t10-,11+/m1/s1
Chemical Name
1-[(2R,5S)-2-methyl-5-(7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)piperidin-1-yl]prop-2-en-1-one
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~220 mg/mL (~771.01 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 5.5 mg/mL (19.28 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 55.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 5.5 mg/mL (19.28 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 55.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 5.5 mg/mL (19.28 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 55.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us