yingweiwo

2'-O-methyluridine

Alias: O(2')-Methyluridine Uridine, 2'-O-Methyluridine; 2140-76-3; Uridine, 2'-O-methyl-; 2'-O-Methyl Uridine; 1-((2R,3R,4R,5R)-4-hydroxy-5-(hydroxymethyl)-3-methoxytetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione; O(2')-Methyluridine; 399VZB6TMB; 1-[(2R,3R,4R,5R)-4-hydroxy-5-(hydroxymethyl)-3-methoxyoxolan-2-yl]pyrimidine-2,4-dione; 2'-O-methyl-2'-O-Methyluridine
Cat No.:V60012 Purity: ≥98%
2'-O-methyluridine is found in rRNA, snRNA, snoRNA, and tRNA from archaea, bacteria, and eukaryotes.
2'-O-methyluridine
2'-O-methyluridine Chemical Structure CAS No.: 2140-76-3
Product category: New4
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1g
5g
10g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description
2'-O-methyluridine is found in rRNA, snRNA, snoRNA, and tRNA from archaea, bacteria, and eukaryotes.
Biological Activity I Assay Protocols (From Reference)
Targets
Antiviral; anticancer
ln Vitro
Ribose methylation is among the most ubiquitous modifications found in RNA. 2'-O-methyluridine is found in rRNA, snRNA, snoRNA and tRNA of Archaea, Bacteria, and Eukaryota. Moreover, 2'-O-methylribonucleosides are promising starting materials for the production of nucleic acid-based drugs. Despite the countless possibilities of practical use for the metabolic enzymes associated with methylated nucleosides, there are very few reports regarding the metabolic fate and enzymes involved in the metabolism of 2'-O-alkyl nucleosides. The presented work focuses on the cellular degradation of 2'-O-methyluridine. A novel enzyme was found using a screening strategy that employs Escherichia coli uracil auxotroph and the metagenomic libraries. A 2'-O-methyluridine hydrolase (RK9NH) has been identified together with an aldolase (RK9DPA)-forming a part of a probable gene cluster that is involved in the degradation of 2'-O-methylated nucleosides. The RK9NH is functional in E. coli uracil auxotroph and in vitro. The RK9NH nucleoside hydrolase could be engineered to enzymatically produce 2'-O-methylated nucleosides that are of great demand as raw materials for production of nucleic acid-based drugs. Moreover, RK9NH nucleoside hydrolase converts 5-fluorouridine, 5-fluoro-2'-deoxyuridine and 5-fluoro-2'-O-methyluridine into 5-fluorouracil, which suggests it could be employed in cancer therapy[1].
Enzyme Assay
Substrate Specificity Measurements The purified recombinant RK9NH nucleoside hydrolase protein was tested for substrate specificity using the thin-layer chromatography (TLC) and high-performance liquid chromatography-mass spectrometry (HPLC-MS) methods. A standard enzymatic reaction of RK9NH was carried out at 37 °C for 1 h and contained 30 mM (uridine, 2′-deoxyuridine, 2′-O-methyluridine, 5-fluorouridine, 5-fluoro-2′-deoxyuridine, 5-fluoro-2′-O-methyluridine) of substrate, final 0.025 mg/mL concentration of recombinant 6×His-tagged RK9NH in 40 µL final volume of 50 mM Tris-HCl pH 8 buffer (the same results were obtained using a 50 mM potassium phosphate buffer pH 7). Not all of the substrates are well soluble in water (and the buffers used), hence some of the final reaction concentrations varied accordingly to the limit of solubility of the substrates: 20 mM cytidine, 2′-deoxycytidine, 5-methyluridine, thymidine; 15 mM 3′-O-methyluridine, 2′-O-allyluridine, 3′-O-allyluridine, 2′-O-methylcytidine, 2′-O-methyladenosine, 2′-O-methylguanosine; 10 mM adenosine, 2′-deoxyadenosine, 2′-amino-2′-deoxyuridine and 5 mM guanosine, 2′-deoxyguanosine, inosine were used. The final 0.017 mg/mL, 0.013 mg/mL, 0.008 mg/mL, 0.004 mg/mL RK9NH protein concentrations were used respectively[1].
References

[1]. Identification of a 2'-O-Methyluridine Nucleoside Hydrolase Using the Metagenomic Libraries. Molecules. 2018;23(11):2904. Published 2018 Nov 7.

Additional Infomation
2'-O-methyluridine is a methyluridine that consists of uridine bearing a single methyl substituent located at position O-2' on the ribose ring.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H14N2O6
Molecular Weight
258.23
Exact Mass
258.085
Elemental Analysis
C, 46.51; H, 5.46; N, 10.85; O, 37.17
CAS #
2140-76-3
PubChem CID
102212
Appearance
Typically exists as white to off-white solids at room temperature
Density
1.5±0.1 g/cm3
Melting Point
154-156ºC
Index of Refraction
1.611
LogP
-1.14
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
3
Heavy Atom Count
18
Complexity
385
Defined Atom Stereocenter Count
4
SMILES
O=C1NC(C=CN1[C@@H]2O[C@H](CO)[C@@H](O)[C@H]2OC)=O
InChi Key
SXUXMRMBWZCMEN-ZOQUXTDFSA-N
InChi Code
InChI=1S/C10H14N2O6/c1-17-8-7(15)5(4-13)18-9(8)12-3-2-6(14)11-10(12)16/h2-3,5,7-9,13,15H,4H2,1H3,(H,11,14,16)/t5-,7-,8-,9-/m1/s1
Chemical Name
C10H14N2O6
Synonyms
O(2')-Methyluridine Uridine, 2'-O-Methyluridine; 2140-76-3; Uridine, 2'-O-methyl-; 2'-O-Methyl Uridine; 1-((2R,3R,4R,5R)-4-hydroxy-5-(hydroxymethyl)-3-methoxytetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione; O(2')-Methyluridine; 399VZB6TMB; 1-[(2R,3R,4R,5R)-4-hydroxy-5-(hydroxymethyl)-3-methoxyoxolan-2-yl]pyrimidine-2,4-dione; 2'-O-methyl-2'-O-Methyluridine
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~387.25 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (9.68 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (9.68 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (9.68 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.8725 mL 19.3626 mL 38.7252 mL
5 mM 0.7745 mL 3.8725 mL 7.7450 mL
10 mM 0.3873 mL 1.9363 mL 3.8725 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us