yingweiwo

3-TYP

Alias: 3 TYP; 3-TYP; 120241-79-4; 3-TYP; 3-(1H-1,2,3-triazol-4-yl)pyridine; Pyridine(3-TYP); 3-(1H-1,2,3-triazol-4-yl) pyridine; CHEMBL373134; MFCD25956467; Pyridine, 3-(1H-1,2,3-triazol-5-yl)-; 3TYP
Cat No.:V2098 Purity: ≥98%
3-TYP [3TYP; full/chemical name: 3-(1H-1,2,3-triazol-4-yl) pyridine)] is a novel, potent and selective SIRT3 inhibitor (IC50 = 16 nM) with high selectivity for SIRT3 over SIRT1 (IC50=88 nM) and SIRT2 (IC50=92 nM).
3-TYP
3-TYP Chemical Structure CAS No.: 120241-79-4
Product category: Sirtuin
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Purity: ≥98%

Product Description

3-TYP [3TYP; full/chemical name: 3-(1H-1,2,3-triazol-4-yl) pyridine)] is a novel, potent and selective SIRT3 inhibitor (IC50 = 16 nM) with high selectivity for SIRT3 over SIRT1 (IC50=88 nM) and SIRT2 (IC50=92 nM). 3-TYP inhibited SIRT3-SOD2 signaling, which prevented the melatonin-mediated suppression of autophagy. Notably, melatonin increased SIRT3 activity in vivo to inhibit Cd-induced autophagic cell death. These findings indicate that melatonin, which is dependent on the SIRT3/SOD2 pathway, has a hepatoprotective effect on mitochondrial-derived O2(•-)-stimulated autophagic cell death.

Biological Activity I Assay Protocols (From Reference)
Targets
SIRT3 ( IC50 = 16 nM ); SIRT1 ( IC50 = 88 nM ); SIRT2 ( IC50 = 92 nM )
ln Vitro
3-TYP does not alter the expression of SIRT3 protein, but it does suppress melatonin-enhanced SIRT3 activity. The protective effects of melatonin on autophagic cell death and mitochondrial-derived O2•− production induced by cadmium (Cd) are reversed by 3-TYP pretreatment. In HepG2 cells exposed to Cd, 3-TYP significantly reduces the increases in deacetylated-SOD2 expression and SOD2 activity that are brought on by melatonin[1].
ln Vivo
3-TYP (50 mg/kg, i.p.) has no discernible impact on the LVEF, LVFS, infarct size, serum LDH levels, oxidative stress, or apoptosis when compared to the Sham group's values. Furthermore, when compared to the Sham group, 3-TYP has minimal impact on the expression levels of gp91phox, Nrf2, NQO 1, Bax, Bcl-2, Caspase-3, and cleaved Caspase-3. 3-TYP has no effect on SIRT3 expression, but it dramatically reduces SIRT3 activity and increases SOD2 acetylation in comparison to the control group. 3-TYP lowers the LVEF and LVFS following a 24-hour period of reperfusion, which lessens the cardioprotective effects of melatonin. In addition, compared to individuals in the IR+Mel group, 3-TYP increases the apoptotic ratio, serum LDH levels, and infarct size[2].
Enzyme Assay
SIRT3 inhibitor (3-TYP) was used to confirm that melatonin was involved in Cd-induced autophagy and the disruption of SIRT3-regulated mitochondrial-derived O2•− production. 3-TYP is a selective SIRT3 inhibitor.31 Exposure to 3-TYP inhibited melatonin-enhanced SIRT3 activity but did not affect SIRT3 protein expression (Fig. S6A and B). Moreover, 3-TYP pretreatment reversed the protective effects of melatonin on Cd-induced mitochondrial-derived O2•− production and autophagic cell death (Fig. 9A–C and Fig. S3F). As shown in Figures 9D and 9E, melatonin-induced increases in deacetylated-SOD2 expression and SOD2 activity were significantly attenuated by 3-TYP in HepG2 cells exposed to Cd[1].
Cell Assay
The Cell Counting Kit-8 is used to analyze cell viability. In short, 96-well plates are inoculated with 1×104 cells. Following treatment, 10 μL of CCK-8 solution and 90 μL of medium are added to each well. Next, the cells are incubated for two hours at 37°C. Using an InfiniteTM M200 Microplate Reader, the absorption at 450 nm is measured following incubation. A percentage of the control is used to express the outcomes. The trypan blue assay is another method used to assess cell death. Plates containing 5×105 cells each well are used to hold HepG2 cells, which are then incubated for a full day. The cells are separated using 300 μL of trypsin-EDTA solution after being exposed to either melatonin or cadmium therapy. For five minutes, the detached cell mixture is centrifuged at 300 g. Following that, 800 μL of trypan blue solution is mixed with the residue and distributed. Cells are counted using an automated cell counter following a 3-minute staining period. The color blue is used to stain the dead cells. The formula for cell mortality (%) is the ratio of dead cells to total cells.
Animal Protocol
In brief, a 6-0 silk suture slipknot is wrapped around the left anterior descending coronary artery to temporarily exteriorize the heart in male C57BL/6 mice under 2% isoflurane anesthesia. Following 30 minutes of myocardial ischemia, the myocardium is reperfused for 3 hours (to measure oxidative stress and perform a western blot analysis) or 24 hours (to assess infarct size, cardiac function, and apoptotic index). The slipknot is then released. The identical surgical procedures are performed on sham-operated mice, with the exception that the suture under the left coronary artery is left untied. Mice are randomized to receive an intraperitoneal injection of either melatonin (20 mg/kg) or vehicle (1% ethanol) ten minutes prior to reperfusion. The C57BL/6 mice are split into the following groups at random: (i) Sham group: mice underwent the sham operation and are treated with vehicle (1% ethanol); (ii) Mel group: mice are treated with melatonin (20 mg/kg via intraperitoneal injection); (iii) IR+V group: mice underwent the MI/R operation and are treated with vehicle (1% ethanol); (iv) IR+Mel group: mice underwent the MI/R operation and are treated with melatonin (20 mg/kg via intraperitoneal injection 10 minutes before reperfusion); (v) IR+Mel+3-TYP group: mice are pretreated with 3-TYP (3-TYP is intraperitoneally injected at a dose of 50 mg/kg every 2 days for a total of three doses prior to the MI/R surgery), subjected to the MI/R operation, and treated with melatonin (20 mg/kg via intraperitoneal injection 10 minutes before reperfusion); and (vi) IR+3-TYP group: mice are pretreated with 3-TYP and then subjected to the MI/R operation.
References

[1]. SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy. 2015;11(7):1037-51.

[2]. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis. J Pineal Res. 2017 Sep;63(2).

[3]. Identification of a sirtuin 3 inhibitor that displays selectivity over sirtuin 1 and 2. Eur J Med Chem. 2012 Sep;55:58-66.

Additional Infomation
Cadmium is one of the most toxic metal compounds found in the environment. It is well established that Cd induces hepatotoxicity in humans and multiple animal models. Melatonin, a major secretory product of the pineal gland, has been reported to protect against Cd-induced hepatotoxicity. However, the mechanism behind this protection remains to be elucidated. We exposed HepG2 cells to different concentrations of cadmium chloride (2.5, 5, and 10 μM) for 12 h. We found that Cd induced mitochondrial-derived superoxide anion-dependent autophagic cell death. Specifically, Cd decreased SIRT3 protein expression and activity and promoted the acetylation of SOD2, superoxide dismutase 2, mitochondrial, thus decreasing its activity, a key enzyme involved in mitochondrial ROS production, although Cd did not disrupt the interaction between SIRT3 and SOD2. These effects were ameliorated by overexpression of SIRT3. However, a catalytic mutant of SIRT3 (SIRT3(H248Y)) lacking deacetylase activity lost the capacity to suppress Cd-induced autophagy. Notably, melatonin treatment enhanced the activity but not the expression of SIRT3, decreased the acetylation of SOD2, inhibited mitochondrial-derived O2(•-) production and suppressed the autophagy induced by 10 μM Cd. Moreover, 3-(1H-1,2,3-triazol-4-yl)pyridine, a confirmed selective SIRT3 inhibitor, blocked the melatonin-mediated suppression of autophagy by inhibiting SIRT3-SOD2 signaling. Importantly, melatonin suppressed Cd-induced autophagic cell death by enhancing SIRT3 activity in vivo. These results suggest that melatonin exerts a hepatoprotective effect on mitochondrial-derived O2(•-)-stimulated autophagic cell death that is dependent on the SIRT3/SOD2 pathway.[1]
Sirtuins are a family of highly evolutionarily conserved nicotinamide adenine nucleotide-dependent histone deacetylases. Sirtuin-3 (SIRT3) is a member of the sirtuin family that is localized primarily to the mitochondria and protects against oxidative stress-related diseases, including myocardial ischemia/reperfusion (MI/R) injury. Melatonin has a favorable effect in ameliorating MI/R injury. We hypothesized that melatonin protects against MI/R injury by activating the SIRT3 signaling pathway. In this study, mice were pretreated with or without a selective SIRT3 inhibitor and then subjected to MI/R operation. Melatonin was administered intraperitoneally (20 mg/kg) 10 minutes before reperfusion. Melatonin treatment improved postischemic cardiac contractile function, decreased infarct size, diminished lactate dehydrogenase release, reduced the apoptotic index, and ameliorated oxidative damage. Notably, MI/R induced a significant decrease in myocardial SIRT3 expression and activity, whereas the melatonin treatment upregulated SIRT3 expression and activity, and thus decreased the acetylation of superoxide dismutase 2 (SOD2). In addition, melatonin increased Bcl-2 expression and decreased Bax, Caspase-3, and cleaved Caspase-3 levels in response to MI/R. However, the cardioprotective effects of melatonin were largely abolished by the selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl)pyridine (3-TYP), suggesting that SIRT3 plays an essential role in mediating the cardioprotective effects of melatonin. In vitro studies confirmed that melatonin also protected H9c2 cells against simulated ischemia/reperfusion injury (SIR) by attenuating oxidative stress and apoptosis, while SIRT3-targeted siRNA diminished these effects. Taken together, our results demonstrate for the first time that melatonin treatment ameliorates MI/R injury by reducing oxidative stress and apoptosis via activating the SIRT3 signaling pathway.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C7H6N4
Molecular Weight
146.1493
Exact Mass
146.059
Elemental Analysis
C, 57.53; H, 4.14; N, 38.34
CAS #
120241-79-4
PubChem CID
9833992
Appearance
White to off-white solid powder
LogP
0.866
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
1
Heavy Atom Count
11
Complexity
128
Defined Atom Stereocenter Count
0
SMILES
N1=C(C([H])=NN1[H])C1=C([H])N=C([H])C([H])=C1[H]
InChi Key
VYXFEFOIYPNBFK-UHFFFAOYSA-N
InChi Code
InChI=1S/C7H6N4/c1-2-6(4-8-3-1)7-5-9-11-10-7/h1-5H,(H,9,10,11)
Chemical Name
3-(2H-triazol-4-yl)pyridine
Synonyms
3 TYP; 3-TYP; 120241-79-4; 3-TYP; 3-(1H-1,2,3-triazol-4-yl)pyridine; Pyridine(3-TYP); 3-(1H-1,2,3-triazol-4-yl) pyridine; CHEMBL373134; MFCD25956467; Pyridine, 3-(1H-1,2,3-triazol-5-yl)-; 3TYP
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : 29~125 mg/mL (198.4~855.3 mM)
Water : ~1.3 mg/mL (~8.6 mM)
Ethanol : 16.7~29 mg/mL (114.1~198.4 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (14.23 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (14.23 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (14.23 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 6.8423 mL 34.2114 mL 68.4229 mL
5 mM 1.3685 mL 6.8423 mL 13.6846 mL
10 mM 0.6842 mL 3.4211 mL 6.8423 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • 3-TYP pretreatment abolishes the melatonin-suppressed autophagy in Cd-injured HepG2 cells. Autophagy . 2015;11(7):1037-51.
Contact Us