Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
Purity: =99.87%
Pemafibrate [(R)-K 13675; K877; Parmodia], a drug used for the reduction of triglycerides, is a potent agonist of peroxisome proliferator-activated receptor alpha (PPAR alpha/PPARα) with EC50 of 1 nM. Pemafibrate is drug that has been designed to selectively and potently activate a receptor in the nucleus of the cell called PPARα. Activation of the PPARα receptor leads to changes in the activity of a number of different genes in the nucleus, which in turn leads to a range of metabolic effects in the body. The main change is a reduction in the concentration of blood triglycerides, even in patients taking statins. Pemafibrate is licenced for use in Japan, as PARMODIA®, for the reduction of triglycerides, but is not yet approved for use in Europe and is currently undergoing clinical trials to assess its ability to reduce serious cardiovascular events in high risk populations. (R)-K-13675 decreases the secretion of inflammatory markers without affecting cell proliferation or tube formation. Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) is a key regulator of lipid and glucose metabolism and has been implicated in inflammation. (R)-K-13675 was associated with the inhibition of inflammatory responses without affecting cell proliferation or angiogenesis, and subsequently may induce an anti-atherosclerotic effect.
Targets |
|
||
---|---|---|---|
ln Vitro |
Pemafibrate is a potent PPARα agonist, with EC50s of 1 nM, 1.10 μM and 1.58 μM for h-PPARα, h-PPARγ and h-PPARδ, respectively. Pemafibrate is more than 1000 fold selective towards PPARα than PPARγ and PPARδ[1].
Pemafibrate inhibits mitochondrial dysfunction by increasing PPARα expression.Pemafibrate suppresses mitochondria-induced apoptosis. Pemafibrate prevents mitochondrial dysfunction via the NF-κB signaling pathway.https://pmc.ncbi.nlm.nih.gov/articles/PMC7903427/ |
||
ln Vivo |
|
||
Cell Assay |
The embryonic rat cardiomyocyte-derived cell line H9c2 was cultured in high-glucose DMEM supplemented with 10% FBS, 100 U/ml penicillin and 100 µg/ml streptomycin at 37˚C in a humidified incubator with 5% CO2. The cells (1x106 cells/well) were seeded into 6-well plates. Prior to the experiments, the cells were starved in 1% FBS-supplemented low glucose DMEM for 24 h and divided into the following groups: i) Low glucose (control; final concentration, 5.5 mmol/l); ii) high glucose (HG; final concentration, 33 mmol/l); iii) HG + hypoxia/reoxygenation (HG + H/R); and iv) HG + H/R + 50 nmol/l Pemafibrate. Briefly, when the cells reached 60% confluence, they were pre-treated with control or HG media for 48 h. Subsequently, the H/R model was induced by culturing the cells for 6 h in hypoxic conditions (95% N2 and 5% CO2) with 1% FBS-DMEM, followed by 4 h of reoxygenation in normal culture conditions. Pemafibrate was dissolved in DMSO (203.85 mmol/l) before being added to media.https://pmc.ncbi.nlm.nih.gov/articles/PMC7903427/
|
||
Animal Protocol |
|
||
ADME/Pharmacokinetics |
In vitro permeability and in vivo pharmacokinetics of pemafibrate were investigated in human intestinal and animal models untreated or pretreated with cyclosporine A or rifampicin to evaluate any drug interactions. Ratios of basal to apical apparent permeability (Papp) over apical to basal Papp in the presence of pH gradients decreased from 0.37 to 0.080 on rifampicin co-incubation, suggesting active transport of pemafibrate from basal to apical sides in intestinal models. Plasma concentrations of intravenously administered pemafibrate were enhanced moderately in control mice but only marginally in humanized-liver mice by oral pretreatment with rifampicin [an organic anion transporting polypeptide (OATP) 1B1 inhibitor] 1 h before the administration of pemafibrate. In three cynomolgus monkeys genotyped as wild-type OATP1B1 (2 homozygous and 1 heterozygous), oral dosing of cyclosporine A 4 h or rifampicin 1 h before pemafibrate administration significantly increased the areas under the plasma concentration-time curves (AUC) of intravenously administered pemafibrate by 4.9- and 7.4-fold, respectively. Plasma AUC values of three pemafibrate metabolites in cynomolgus monkeys were also increased by cyclosporine A or rifampicin. These results suggested that pemafibrate was actively uptaken in livers and rapidly cleared from plasma in cynomolgus monkeys; this rapid clearance was suppressible by OATP1B1 inhibitors.Drug Metab Pharmacokinet. 2020 Aug;35(4):354-360.
Elevated triglyceride levels are associated with an increased risk of cardiovascular events despite guideline-based statin treatment of low-density lipoprotein cholesterol. Peroxisome proliferator-activated receptor α (PPARα) agonists exert a significant triglyceride-lowering effect. However, combination therapy of PPARα agonists with statins poses an increased risk of rhabdomyolysis, which is rare but a major concern of the combination therapy. Pharmacokinetic interaction is suspected to be a contributing factor to the risk. To examine the potential for combination therapy with the selective PPARα modulator (SPPARMα) pemafibrate and statins, drug-drug interaction studies were conducted with open-label, randomized, 6-sequence, 3-period crossover designs for the combination of pemafibrate 0.2 mg twice daily and each of 6 statins once daily: pitavastatin 4 mg/day (n = 18), atorvastatin 20 mg/day (n = 18), rosuvastatin 20 mg/day (n = 29), pravastatin 20 mg/day (n = 18), simvastatin 20 mg/day (n = 20), and fluvastatin 60 mg/day (n = 19), involving healthy male volunteers. The pharmacokinetic parameters of pemafibrate and each of the statins were similar regardless of coadministration. There was neither an effect on the systemic exposure of pemafibrate nor a clinically important increase in the systemic exposure of any of the statins on the coadministration although the systemic exposure of simvastatin was reduced by about 15% and its open acid form by about 60%. The HMG-CoA reductase inhibitory activity in plasma samples from the simvastatin and pemafibrate combination group was about 70% of that in the simvastatin alone group. In conclusion, pemafibrate did not increase the systemic exposure of statins, and vice versa, in healthy male volunteers. Clin Transl Sci. 2024 Aug;17(8):e13900. |
||
Toxicity/Toxicokinetics |
Aims: Per the package insert, pemafibrate was contraindicated for use in patients with severe renal impairment despite its biliary excretion. To validate this, we evaluated the pharmacokinetics and safety of pemafibrate for 12 weeks in patients with hypertriglyceridemia and renal impairment.
Methods: In this phase 4, multicenter, placebo-controlled, double-blind, parallel-group, comparative study, 21 patients were randomly assigned to pemafibrate 0.2 mg/day or placebo within Groups A (estimated glomerular filtration rate [eGFR] <30 mL/min/1.73m2 without hemodialysis; pemafibrate n=4; placebo, n=2), B (hemodialysis; pemafibrate, n=4; placebo, n=1), and C (eGFR ≥ 30 and <60 mL/min/1.73m2 without hemodialysis; pemafibrate, n=8; placebo, n=2) for 12 weeks. Area under the concentration vs time curve within the dosing interval (τ) (AUCτ) of pemafibrate was measured after 12-week administration. Results: The AUCτ (geometric mean) of pemafibrate was 7.333 and 7.991 ng·h/mL in Groups A+B and C, respectively; in Groups A+B to C at 12 weeks, the geometric mean ratio of pemafibrate AUCτ was 0.92 (90% confidence interval [CI]: 0.62, 1.36). The upper limit of the 90% CI was ≤ 2.0 (predetermined criterion). There was no consistent trend in the AUCτ and maximum plasma concentration of pemafibrate with/without statin use. Renal impairment degree did not affect the incidence of adverse events. No safety concerns were observed. Conclusion: Pemafibrate repeated administration in patients with severe renal impairment did not increase pemafibrate exposure.J Atheroscler Thromb. 2024 Sep 5. doi: 10.5551/jat.64887. O |
||
References |
|
||
Additional Infomation |
Pemafibrate is a member of the class of 1,3-benzoxazoles that is 1,3-benzoxazol-2-amine in which the amino hydrogens are replaced by 3-[(1R)-1-carboxypropoxy]benzyl and 3-(4-methoxyphenoxy)propyl groups. It is a selective peroxisome proliferator-activated receptor (PPAR)-alpha agonist that is used for the treatment of hyperlipidaemia. It has a role as a PPARalpha agonist, an antilipemic drug and a hepatoprotective agent. It is a member of 1,3-benzoxazoles, a member of methoxybenzenes, a monocarboxylic acid, an aromatic amine and a tertiary amino compound.
Pemafibrate is under investigation in clinical trial NCT03350165 (A Study of Pemafibrate in Patients With Nonalcoholic Fatty Liver Disease (NAFLD)). Drug Indication Prevention of cardiovascular events in patients with elevated triglycerides levels, Treatment of hypertriglyceridaemia. The efficacy of peroxisome proliferator-activated receptor α-agonists (e.g., fibrates) against nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) in humans is not known. Pemafibrate is a novel selective peroxisome proliferator-activated receptor α modulator that can maximize the beneficial effects and minimize the adverse effects of fibrates used currently. In a phase-2 study, pemafibrate was shown to improve liver dysfunction in patients with dyslipidaemia. In the present study, we first investigated the effect of pemafibrate on rodent models of NASH. Pemafibrate efficacy was assessed in a diet-induced rodent model of NASH compared with fenofibrate. Pemafibrate and fenofibrate improved obesity, dyslipidaemia, liver dysfunction, and the pathological condition of NASH. Pemafibrate improved insulin resistance and increased energy expenditure significantly. To investigate the effects of pemafibrate, we analysed the gene expressions and protein levels involved in lipid metabolism. We also analysed uncoupling protein 3 (UCP3) expression. Pemafibrate stimulated lipid turnover and upregulated UCP3 expression in the liver. Levels of acyl-CoA oxidase 1 and UCP3 protein were increased by pemafibrate significantly. Pemafibrate can improve the pathogenesis of NASH by modulation of lipid turnover and energy metabolism in the liver. Pemafibrate is a promising therapeutic agent for NAFLD/NASH.[2] Aims: Fasting and postprandial hypertriglyceridemia (PHTG) are caused by the accumulation of triglyceride (TG)-rich lipoproteins and their remnants, which have atherogenic effects. Fibrates can improve fasting and PHTG; however, reduction of remnants is clinically needed to improve health outcomes. In the current study, we investigated the effects of a novel selective peroxisome proliferator-activated receptor α modulator (SPPARMα), K-877 (Pemafibrate), on PHTG and remnant metabolism. Methods: Male C57BL/6J mice were fed a high-fat diet (HFD) only, or an HFD containing 0.0005% K-877 or 0.05% fenofibrate, from 8 to 12 weeks of age. After 4 weeks of feeding, we measured plasma levels of TG, free fatty acids (FFA), total cholesterol (TC), HDL-C, and apolipoprotein (apo) B-48/B-100 during fasting and after oral fat loading (OFL). Plasma lipoprotein profiles after OFL, which were assessed by high performance liquid chromatography (HPLC), and fasting lipoprotein lipase (LPL) activity were compared among the groups. Results: Both K-877 and fenofibrate suppressed body weight gain and fasting and postprandial TG levels and enhanced LPL activity in mice fed an HFD. As determined by HPLC, K-877 and fenofibrate significantly decreased the abundance of TG-rich lipoproteins, including remnants, in postprandial plasma. Both K-877 and fenofibrate decreased intestinal mRNA expression of ApoB and Npc1l1; however, hepatic expression of Srebp1c and Mttp was increased by fenofibrate but not by K-877.Hepatic mRNA expression of apoC-3 was decreased by K-877 but not by fenofibrate. Conclusion: K-877 may attenuate PHTG by suppressing the postprandial increase of chylomicrons and the accumulation of chylomicron remnants more effectively than fenofibrate.[3] Diabetes mellitus accelerates the hyperglycemia susceptibility-induced injury to cardiac cells. The activation of peroxisome proliferator-activated receptor α (PPARα) decreases ischemia-reperfusion (IR) injury in animals without diabetes. Therefore, the present study hypothesized that pemafibrate may exert a protective effect on the myocardium in vivo and in vitro. A type 1 diabetes mellitus (T1DM) rat model and H9c2 cells exposed to high glucose under hypoxia and reoxygenation treatments were used in the present study. The rat model and the cells were subsequently treated with pemafibrate. In the T1DM rat model, pemafibrate enhanced the expression of PPARα in the diabetic-myocardial ischemia-reperfusion injury (D-IRI) group compared with the D-IRI group. The infarct size in the D-IRI group was reduced following pemafibrate treatment relative to the untreated group. The disruption of the mitochondrial structure and myofibrils in the D-IRI group was partially recovered by pemafibrate. In addition, to evaluate the mechanism of action of pemafibrate in the treatment of diabetic myocardial IR injury, an in vitro model was established. PPARα protein expression levels were reduced in the high glucose and hypoxia/reoxygenation (H/R) groups compared with that in the control or high glucose-treated groups. Pemafibrate treatment significantly enhanced the ATP and superoxide dismutase levels, and reduced the mitochondrial reactive oxygen species and malondialdehyde levels compared with the high glucose combined with H/R group. Furthermore, pemafibrate inhibited the expression of cytochrome c and cleaved-caspase-3, indicating its involvement in the regulation of mitochondrial apoptosis. Pemafibrate also reduced the expression of nuclear factor-κB (NF-κB), the activation of which reversed the protective effects of pemafibrate on diabetic myocardial IR injury in vitro. Taken together, these results suggested that pemafibrate may activate PPARα to protect the T1DM rat myocardium against IR injury through inhibition of NF-κB signaling.https://pmc.ncbi.nlm.nih.gov/articles/PMC7903427/ |
Molecular Formula |
C28H30N2O6
|
---|---|
Molecular Weight |
490.556
|
Exact Mass |
490.21
|
Elemental Analysis |
C, 68.56; H, 6.16; N, 5.71; O, 19.57
|
CAS # |
848259-27-8
|
Related CAS # |
950644-31-2 (sodium); 848258-31-1 (racemate); 848259-27-8 (free acid);
|
PubChem CID |
11526038
|
Appearance |
White to yellow solid powder
|
LogP |
5.554
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
8
|
Rotatable Bond Count |
13
|
Heavy Atom Count |
36
|
Complexity |
658
|
Defined Atom Stereocenter Count |
1
|
SMILES |
CC[C@H](C(=O)O)OC1=CC=CC(=C1)CN(CCCOC2=CC=C(C=C2)OC)C3=NC4=CC=CC=C4O3
|
InChi Key |
ZHKNLJLMDFQVHJ-RUZDIDTESA-N
|
InChi Code |
InChI=1S/C28H30N2O6/c1-3-25(27(31)32)35-23-9-6-8-20(18-23)19-30(28-29-24-10-4-5-11-26(24)36-28)16-7-17-34-22-14-12-21(33-2)13-15-22/h4-6,8-15,18,25H,3,7,16-17,19H2,1-2H3,(H,31,32)/t25-/m1/s1
|
Chemical Name |
(R)-2-(3-((benzo[d]oxazol-2-yl(3-(4-methoxyphenoxy)propyl)amino)methyl)phenoxy)butanoic acid
|
Synonyms |
K877; (R)-K13675; K-877; (R)-K 13675; K 877; 848259-27-8; Pemafibrate [INN]; (R)-K-13675; K-13675, (R)-; (R)-2-(3-((benzo[d]oxazol-2-yl(3-(4-methoxyphenoxy)propyl)amino)methyl)phenoxy)butanoic acid; CHEMBL247951; CAS#848259-27-8; (R) K-13675; Pemafibrate sodium; (R)-K 13675; Parmodia
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.0385 mL | 10.1924 mL | 20.3849 mL | |
5 mM | 0.4077 mL | 2.0385 mL | 4.0770 mL | |
10 mM | 0.2038 mL | 1.0192 mL | 2.0385 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.