yingweiwo

Luxdegalutamide (ARV766)

Alias: Luxdegalutamide; ARV-766; 2750830-09-0; ARV766; 4-(4-((1-(4-((trans-3-(4-Cyano-3-methoxyphenoxy)-2,2,4,4-tetramethylcyclobutyl)carbamoyl)phenyl)piperidin-4-yl)methyl)piperazin-1-yl)-N-((S)-2,6-dioxopiperidin-3-yl)-2-fluorobenzamide; luxdegalutamide [INN]; 5BD7R933PV; CHEMBL5314528;
Cat No.:V60130 Purity: ≥98%
Luxdegalutamide (ARV-766) is a potent oral protein degrading chimeric (PROTAC) protein degrader.
Luxdegalutamide (ARV766)
Luxdegalutamide (ARV766) Chemical Structure CAS No.: 2750830-09-0
Product category: Androgen Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
25mg
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Luxdegalutamide (ARV-766) is a potent oral protein degrading chimeric (PROTAC) protein degrader. Luxdegalutamide is a surrogate for wild-type androgenic AR, but there are also degradation-related AR LBD mutants such as the most common defective AR L702H, H875Y, and T878A mutations. Yes Yes
Biological Activity I Assay Protocols (From Reference)
Targets
AR/androgen receptor
ln Vitro
ARV-766 is a proteolysis targeting chimera (PROTAC®) that induces a protein-protein interaction between the AR and specific E3 ubiquitin ligase complexes, leading to the ubiquitination of AR and its subsequent degradation via the proteasome. In vitro, ARV-766 degrades AR in various prostate cancer cell lines, including those harboring resistance-conferring, clinically relevant point mutations, with a half-maximal degradation concentration (DC50) of <1 nM in wild type VCaP. Importantly ARV-766 also maintains potency against the AR L702H mutant, which has been associated with resistance to some AR antagonists[2].
ln Vivo
In vivo, ARV-766 is orally bioavailable and robustly degrades AR with a >90% observed maximum degradation (Dmax) at efficacious doses. ARV-766 significantly and dose-dependently inhibits tumor growth in murine LNCaP and VCaP xenograft models, including an enzalutamide-insensitive non-castrated VCaP model. These preclinical data supported the clinical development of ARV-766 for the treatment of men with metastatic CRPC. Selected pre-clinical data along with the chemical structure of ARV-766 will be presented[2].
Enzyme Assay
ARV-766 is an orally bioavailable PROTAC® protein degrader that targets the androgen receptor (AR) and is currently being developed for the treatment of prostate cancer in a phase 2 clinical trial. In vitro studies were conducted to assess the potential of ARV-766 to cause cytochrome P450 (CYP) and transporter-mediated drug-drug interactions (DDI). The induction potential of ARV-766 on CYP enzymes was assessed in cryopreserved human hepatocytes from three donors. Following treatment for 48 hours, mRNA levels for CYP1A2, 2B6, 2C8, 2C9, 2C19, and 3A4 were determined by semiquantitative real-time polymerase chain reaction (PCR). The potential for ARV-766 to cause direct and time-dependent inhibition of the activities of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A was evaluated in pooled human liver microsomes (HLM). In addition, the inhibition potential against efflux transporters (Pgp and BCRP) and uptake transporters (MATE1, MATE2-K, OATP1B1, OATP1B3, OAT1, OAT3, and OCT2) was assessed using single transporter over-expressed cell monolayers (MDCK II or HEK293) or inside-out vesicles. DDI potential of ARV-766 as a victim via CYP mediated pathways was examined in HLM, human hepatocyte suspensions and recombinant CYP enzymes. ARV-766 as a substrate of Pgp and BCRP as well as OATP1B1 and 1B3 were assessed in Caco-2 and single transporter over-expressed HEK293 cells, respectively. The results showed that ARV-766 at concentrations ranging from 0.03 - 30 μM did not induce mRNA of CYP1A2, 2B6 and 2C9. Induction of CYP3A4 and CYP2C8 mRNA was observed with a maximal 2.5-8.8-fold (4-6% of positive control response) for CYP3A4 across all three hepatocyte lots, and a maximal 3.1-fold (28% of positive control response) for CYP2C8 in one of three lots. No direct or time-dependent inhibition was observed for any of the CYP isoforms after incubating HLM with ARV-766 at concentrations of 0.2-15 μM. ARV-766 did not inhibit any of the uptake transporters up to 3.75 μM tested except for MATE1 with IC50 value of 3.05 μM. ARV-766 inhibited BCRP with IC50 values of 0.21 μM (vesicle assay) and 1.55 μM (monolayer assay), and Pgp with IC50 values of 0.23 μM (vesicle assay) and >5 μM (monolayer assay). ARV-766 was relatively stable in HLM (up to 60 min), human hepatocyte suspension (up to 240 min) and major recombinant CYPs (up to 25 min) except for a 23% loss of parent with recombinant CYP3A5. Metabolite profiling using human plasma, HLM and human hepatocytes indicated that hydrolysis was the major metabolic pathway. Other minor pathways included oxidation, de-alkylation, and demethylation, which combined represent <2% of total abundance. ARV-766 exhibited low permeability in Caco-2 cell monolayers and the involvement of ARV-766 in an active efflux process was not reliably determined. In addition, ARV-766 was not likely a substrate for OATP1B1/3. These data demonstrate that ARV-766 has a low potential to cause significant DDI as an inhibitor or substrate of CYP enzymes. Clinical DDI studies with CYP3A inhibitors and inducers, and Pgp and BCRP substrates are being investigated. The 4β-hydroxy-cholesterol, a biomarker of CYP3A, is also being measured in the ongoing phase 2 clinical trial[1].
Animal Protocol
Patients with mCRPC inevitably develop resistance to available therapies and lack curative options. In patients treated with novel hormonal agents (NHAs), mutations can develop in the ligand-binding domain (LBD) of the AR gene, some of which are associated with resistance to current therapies and disease progression. ARV-766 is a novel, potent, orally bioavailable proteolysis targeting chimera (PROTAC) protein degrader that degrades not only wild-type AR but also clinically relevant AR LBD mutants, including the most prevalent AR L702H, H875Y, and T878A mutations. Here we describe a phase 2 expansion study to evaluate the clinical activity and safety of ARV-766 in men with mCRPC who have experienced disease progression on prior NHA therapy. Methods: This phase 2 cohort expansion is part of an open-label, first-in-human, phase 1/2 clinical trial of ARV-766 in men (aged ≥18 years) with histologically, pathologically, or cytologically confirmed mCRPC and Eastern Cooperative Oncology Group performance status score of 0 or 1. Ongoing androgen deprivation therapy with a gonadotropin-releasing hormone analog or inhibitor or orchiectomy is required. Patients enrolled in the cohort expansion must have received 1–3 prior NHAs (eg, abiraterone or enzalutamide) and ≤2 prior chemotherapy regimens. Following completion of dose escalation in the phase 1 portion of the study, which is evaluating the safety and tolerability of ARV-766, 2 doses (100 mg and 300 mg administered orally once daily in 28-day cycles) were selected for the phase 2 cohort expansion. The primary objectives of the cohort expansion study are to evaluate the antitumor activity of ARV-766 based on the overall response rate (per Response Evaluation Criteria in Solid Tumors) and the rates of prostate-specific antigen (PSA) declines of 30% (PSA30) and 50% (PSA50). Enrollment in the phase 2 expansion study is ongoing. Clinical trial information: NCT05067140.[3]
References
[1]. Snyder L, et al. In vitro evaluation of PROTAC® degrader ARV-766 for cytochrome P450-and transporter-mediated drug-drug interaction. Drug Metabolism and Pharmacokinetics, 2024, 55: 100881.
[2]. Snyder L, et al. Abstract ND03: Discovery of ARV-766, an androgen receptor degrading PROTAC® for the treatment of men with metastatic castration resistant prostate cancer. Cancer Research, 2023, 83(7_Supplement): ND03-ND03.
[3]. Petrylak D P, et al. A phase 2 expansion study of ARV-766, a PROTAC androgen receptor (AR) degrader, in metastatic castration-resistant prostate cancer (mCRPC). 2023.https://ascopubs.org/doi/abs/10.1200/JCO.2023.41.6_suppl.TPS290
Additional Infomation
Luxdegalutamide is an orally bioavailable androgen receptor (AR)-targeted protein degrader, composed of an AR ligand attached to an E3 ligase recognition moiety and utilizing the proteolysis targeting chimera (PROTAC) technology, with potential antineoplastic activity. Upon oral administration, luxdegalutamide targets and binds to the AR ligand binding domain on the AR. E3 ligase is then recruited to the AR by the E3 ligase recognition moiety of luxdegalutamide and the AR is tagged by ubiquitin. This causes ubiquitination and degradation of AR by the proteasome, and prevents the expression of AR target genes and halts AR-mediated signaling. This inhibits the proliferation of AR-overexpressing tumor cells. In addition, the degradation of the AR releases luxdegalutamide, allowing it to bind to additional AR. AR plays a key role in the proliferation of castration-resistant prostate cancer cells (CRPC). Luxdegalutamide may degrade resistance-driving point mutations of AR, including the L702H mutation associated with treatments including abiraterone.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C45H54FN7O6
Molecular Weight
807.951974391937
Exact Mass
807.41196
Elemental Analysis
C, 66.90; H, 6.74; F, 2.35; N, 12.14; O, 11.88
CAS #
2750830-09-0
PubChem CID
156504141
Appearance
White to off-white solid powder
LogP
5.9
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
11
Rotatable Bond Count
11
Heavy Atom Count
59
Complexity
1550
Defined Atom Stereocenter Count
1
SMILES
C(N[C@H]1CCC(=O)NC1=O)(=O)C1=CC=C(N2CCN(CC3CCN(C4=CC=C(C(N[C@@H]5C(C)(C)[C@@H](OC6=CC=C(C#N)C(OC)=C6)C5(C)C)=O)C=C4)CC3)CC2)C=C1F
InChi Key
RDPPBRKNBBXPNZ-PJXMSJPKSA-N
InChi Code
InChI=1S/C45H54FN7O6/c1-44(2)42(45(3,4)43(44)59-33-12-8-30(26-47)37(25-33)58-5)50-39(55)29-6-9-31(10-7-29)52-18-16-28(17-19-52)27-51-20-22-53(23-21-51)32-11-13-34(35(46)24-32)40(56)48-36-14-15-38(54)49-41(36)57/h6-13,24-25,28,36,42-43H,14-23,27H2,1-5H3,(H,48,56)(H,50,55)(H,49,54,57)/t36-,42?,43?/m0/s1
Chemical Name
4-[4-[[1-[4-[[3-(4-cyano-3-methoxyphenoxy)-2,2,4,4-tetramethylcyclobutyl]carbamoyl]phenyl]piperidin-4-yl]methyl]piperazin-1-yl]-N-[(3S)-2,6-dioxopiperidin-3-yl]-2-fluorobenzamide
Synonyms
Luxdegalutamide; ARV-766; 2750830-09-0; ARV766; 4-(4-((1-(4-((trans-3-(4-Cyano-3-methoxyphenoxy)-2,2,4,4-tetramethylcyclobutyl)carbamoyl)phenyl)piperidin-4-yl)methyl)piperazin-1-yl)-N-((S)-2,6-dioxopiperidin-3-yl)-2-fluorobenzamide; luxdegalutamide [INN]; 5BD7R933PV; CHEMBL5314528;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~123.77 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 2.5 mg/mL (3.09 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.2377 mL 6.1885 mL 12.3770 mL
5 mM 0.2475 mL 1.2377 mL 2.4754 mL
10 mM 0.1238 mL 0.6189 mL 1.2377 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
A Study of ARV-766 Given by Mouth in Men With Metastatic Prostate Cancer
CTID: NCT05067140
Phase: Phase 1/Phase 2
Status: Recruiting
Date: 2024-04-05
Contact Us