Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
Other Sizes |
|
Targets |
HIV; DNA polymerase of HBV
|
---|---|
ln Vitro |
In H9c2 cells, treatment with 100 µM zidovudine (AZT) for 48 hours causes AZT triphosphate (3'-Azido-3'-deoxythymidine-5'-triphosphate) tetraammonium buildup that disturbs the mitochondrial tubular network. Opa1 is downregulated and Drp1 is upregulated when AZT triphosphate tetraammonium accumulates. In the H9c2 cell model derived from rat embryonic myoblasts, AZT triphosphate tetraammonium disrupts the balance of the mitochondrial quality control system, results in mitochondrial malfunction, and enhances the generation of harmful reactive oxygen species (ROS)[1].
|
ln Vivo |
Low-dose AZT administration to non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice injected with transduced K562 cells suppressed tumor growth. This novel suicide gene therapy approach can thus be integrated as a safety switch into therapeutic vectors.[2]
|
Enzyme Assay |
Acyclovir (ACV) triphosphate and azidothymidine (AZT) triphosphate inhibit the DNA polymerase of human hepatitis B virus (HBV) by 50% at submicromolar concentrations, but no effects of ACV or AZT treatment have been noted on the clinical manifestations of hepatitis B. We synthesized 1-O-octadecyl-sn-glycero-3-phospho-acyclovir (ODG-P-ACV), 1-O-hexadecylpropanediol-3-phospho-acyclovir (HDP-P-ACV), and 1-O-octadecyl-sn-glycero-3-phospho-azidothymidine (ODG-P-AZT), and evaluated their antiviral activity in human hepatoma cells that constitutively produce HBV (2.2.15 cells). ACV and AZT up to 100 microM caused only slight inhibition of HBV replication in 2.2.15 cells. However, HDP-P-ACV and ODG-P-ACV inhibited viral replication by 50% at 0.5 and 6.8 microM, respectively. ODG-P-AZT also showed increased antiviral activity, with a 50% reduction in HBV replication at 2.1 microM. Based on the EC50, HDP-P-ACV, ODG-P-ACV, and ODG-P-AZT were > 200, > 14.7, and > 48 times more active than their free nucleosides in reducing HBV replication in 2.2.15 cells. To evaluate the biochemical basis for the increased antiviral activity, we studied the uptake and metabolism of 1-O-octadecyl-sn-glycero-3-phospho-[3H]acyclovir (ODG-P-[3H]ACV) in HepG2 cells. Cellular uptake of ODG-P-[3H]ACV was found to be substantially greater than that of [3H]ACV, and cellular levels of ACV-mono-, -di-, and -triphosphate were much higher with ODG-P-ACV. ODG-P-[3H]ACV was well absorbed orally. Based on urinary recovery of tritium after oral or parenteral administration of the radiolabeled compounds, oral absorption of ODG-P-ACV in mice was 100% versus 37% for ACV. ODG-P-ACV plasma area under the curve was more than 7-fold greater than that of ACV. Lipid prodrugs of this type may be useful orally in treating viral diseases.[3]
|
Cell Assay |
Gene therapy and stem cell transplantation safety could be enhanced by control over the fate of therapeutic cells. Suicide gene therapy uses enzymes that convert prodrugs to cytotoxic entities; however, heterologous moieties with poor kinetics are employed. We describe a novel enzyme/prodrug combination for selectively inducing apoptosis in lentiviral vector-transduced cells. Rationally designed variants of human thymidylate kinase (tmpk) that effectively phosphorylate 3'-azido-3'-deoxythymidine (AZT) were efficiently delivered. Transduced Jurkat cell lines were eliminated by AZT. We demonstrate that this schema targeted both dividing and non-dividing cells, with a novel killing mechanism involving apoptosis induction via disruption of the mitochondrial inner membrane potential and activation of caspase-3. Primary murine and human T cells were also transduced and responded to AZT. [2]
|
References |
|
Additional Infomation |
See also: Lamivudine; zidovudine (annotation moved to).
|
Molecular Formula |
C10H28N9O13P3
|
---|---|
Molecular Weight |
575.30
|
Exact Mass |
524.022
|
CAS # |
106060-92-8
|
Related CAS # |
AZT triphosphate;92586-35-1;AZT triphosphate TEA
|
PubChem CID |
72187
|
Appearance |
Off-white to light yellow solid powder
|
LogP |
-3.2
|
Hydrogen Bond Donor Count |
5
|
Hydrogen Bond Acceptor Count |
15
|
Rotatable Bond Count |
9
|
Heavy Atom Count |
31
|
Complexity |
973
|
Defined Atom Stereocenter Count |
3
|
SMILES |
CC1=CN(C(=O)NC1=O)[C@H]2C[C@@H]([C@H](O2)COP(=O)(O)OP(=O)(O)OP(=O)(O)O)N=[N+]=[N-]
|
InChi Key |
GLWHPRRGGYLLRV-XLPZGREQSA-N
|
InChi Code |
InChI=1S/C10H16N5O13P3/c1-5-3-15(10(17)12-9(5)16)8-2-6(13-14-11)7(26-8)4-25-30(21,22)28-31(23,24)27-29(18,19)20/h3,6-8H,2,4H2,1H3,(H,21,22)(H,23,24)(H,12,16,17)(H2,18,19,20)/t6-,7+,8+/m0/s1
|
Chemical Name |
[[(2S,3S,5R)-3-azido-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate
|
Synonyms |
AZT triphosphate tetraammonium; 106060-92-8
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : 100 mg/mL (173.82 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 5 mg/mL (8.69 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.7382 mL | 8.6911 mL | 17.3822 mL | |
5 mM | 0.3476 mL | 1.7382 mL | 3.4764 mL | |
10 mM | 0.1738 mL | 0.8691 mL | 1.7382 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.