yingweiwo

Abemaciclib metabolite M18 hydrochloride (LSN3106729 hydrochloride)

Alias: Abemaciclib metabolite M18 hydrochloride; 2704316-82-3; Abemaciclib metabolite M18 (hydrochloride); LSN3106729 (hydrochloride); EX-A8463; CDK ligand for PROTAC hydrochloride;
Cat No.:V52459 Purity: ≥98%
Abemaciclib metabolite M18 (LSN3106729) HCl, a metabolite of Abemaciclib , is a CDK inhibitor (antagonist) with anti-tumor activity.
Abemaciclib metabolite M18 hydrochloride (LSN3106729 hydrochloride)
Abemaciclib metabolite M18 hydrochloride (LSN3106729 hydrochloride) Chemical Structure CAS No.: 2704316-82-3
Product category: CDK
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
50mg
100mg
Other Sizes

Other Forms of Abemaciclib metabolite M18 hydrochloride (LSN3106729 hydrochloride):

  • Abemaciclib metabolite M18-d8 (LSN3106729-d8)
  • Abemaciclib metabolite M18 (LSN3106729)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Abemaciclib metabolite M18 (LSN3106729) HCl, a metabolite of Abemaciclib , is a CDK inhibitor (antagonist) with anti-tumor activity. Abemaciclib metabolite M18 HCl and CRBN ligands may be utilized to design PROTAC CDK4/6 degraders.
Biological Activity I Assay Protocols (From Reference)
Targets
CDK4/6
ln Vitro
In the plasma of healthy persons, the metabolite M18 hydrochloride of abelacilb has a T1/2 of 43.1 hours [3]. The primary mode of action of CDK4/6 inhibitors is to cause cell cycle arrest by blocking the phosphorylation of the retinoblastoma (RB) protein. Other modifications to cancer cell biology are made by CDK4/6 inhibitors [4].
ln Vivo
CDK4/6 inhibitors enhanced T cell survival and immunological memory in mice given tumor-specific CD8+ T cells [5].
References

[1]. Abemaciclib in Combination with Single-Agent Options in Patients with Stage IV Non–Small Cell Lung Cancer: A Phase Ib Study. Clin Cancer Res (2018) 24 (22): 5543–5551.

[2]. Degradation of cyclin-dependent kinase 4/6 (cdk4/6) by conjugation of cdk4/6 inhibitors with e3 ligase ligand and methods of use. WO2017185031A1.

[3]. Abstract CT153: Pharmacokinetic drug interactions between abemaciclib and CYP3A inducers and inhibitors. Cancer Res. 2016-7-15; 76 (14_Supplement): CT153.

[4]. CDK4/6 Inhibition in Cancer: Beyond Cell Cycle Arrest. Trends Cell Biol. 2018 Nov;28(11):911-925.

[5]. Inhibition of CDK4/6 Promotes CD8 T-cell Memory Formation. Cancer Discov. 2021 Oct;11(10):2564-2581.

Additional Infomation
Purpose: Abemaciclib, a dual inhibitor of cyclin-dependent kinases 4 and 6, has demonstrated preclinical activity in non–small cell lung cancer (NSCLC). A multicenter, nonrandomized, open-label phase Ib study was conducted to test safety, MTD, pharmacokinetics, and preliminary antitumor activity of abemaciclib in combination with other therapies for treatment in patients with metastatic NSCLC. Patients and Methods: An initial dose escalation phase was used to determine the MTD of twice-daily oral abemaciclib (150, 200 mg) plus pemetrexed, gemcitabine, or ramucirumab, followed by an expansion phase for each drug combination. Pemetrexed and gemcitabine were administered according to label. The abemaciclib plus ramucirumab study examined two dosing schedules. Results: The three study parts enrolled 86 patients; all received ≥1 dose of combination therapy. Across arms, the most common treatment-emergent adverse events were fatigue, diarrhea, neutropenia, decreased appetite, and nausea. The trial did not identify an abemaciclib MTD for the combination with pemetrexed or gemcitabine but did so for the combination of abemaciclib with days 1 and 8 ramucirumab (8 mg/kg). Plasma sample analysis showed that abemaciclib did not influence the pharmacokinetics of the combination agents and the combination agents did not affect abemaciclib exposure. The disease control rate was 57% for patients treated with abemaciclib–pemetrexed, 25% for abemaciclib–gemcitabine, and 54% for abemaciclib–ramucirumab. Median progression-free survival was 5.55, 1.58, and 4.83 months, respectively. Conclusions: Abemaciclib demonstrated an acceptable safety profile when dosed on a continuous twice-daily schedule in combination with pemetrexed, gemcitabine, or ramucirumab. Abemaciclib exposures remained consistent with those observed in single-agent studies. [1]
Abemaciclib is a selective and potent small-molecule inhibitor of cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) being investigated for treatment of refractory hormone-receptor positive (HR+) advanced or metastatic breast cancer. In vitro, CYP3A is responsible for >99% of the CYP-mediated microsomal metabolism of abemaciclib and its active metabolites. Three clinical studies evaluated the disposition and metabolism and drug interaction potential of abemaciclib in the presence of a strong CYP3A-inducer, rifampin, or a strong CYP3A-inhibitor, clarithromycin. Abemaciclib disposition and metabolism were determined following a single oral 150 mg dose of [14C]-abemaciclib in healthy subjects (N = 6). In the rifampin interaction study, abemaciclib was administered as a single oral 200 mg dose in healthy subjects (N = 24) on 2 occasions: alone on Day 1 of Period 1 and in combination with 600 mg rifampin on Day 7 of Period 2, after 6 days of rifampin once daily (QD) dosing; rifampin continued QD for 7 days after abemaciclib. In the clarithromycin interaction study, abemaciclib was administered as a single oral 50 mg dose in patients with advanced cancer (N = 26) on 2 occasions: alone in Period 1 and on Day 5 of clarithromycin dosing (500 mg BID) in Period 2 followed by an additional 7 days of clarithromycin. Abemaciclib was extensively metabolized, with less than 10% of parent drug recovered unchanged in feces. Parent drug and 3 active metabolites; (LSN2839567 [M2], LSN3106729 [M18], and LSN3106726 [M20]) were detected in plasma. The mean t1/2 in healthy subjects was 29.0, 104.0, 55.9, and 43.1 hours for abemaciclib, M2, M18, and M20, respectively. Coadministration with rifampin compared to abemaciclib alone decreased abemaciclib AUC(0-?) and Cmax by 95% and 92%, respectively, and decreased AUC(0-?) and Cmax of total active species (abemaciclib + M2 + M18+ M20) by 77% and 45%, respectively. Coadministration with clarithromycin compared to abemaciclib alone increased abemaciclib AUC(0-?) and Cmax by 237% and 30%, respectively; and increased the total active species AUC(0-?) by 119% and decreased Cmax by 7%. The mean abemaciclib t1/2 was prolonged from 28.8 to 63.6 hours. No clinically significant safety concerns were observed following single doses of abemaciclib in healthy subjects or in patients with advanced cancer based on vital signs, clinical laboratory evaluations, and electrocardiogram data. The human absorption, distribution, metabolism and excretion study indicated that abemaciclib was cleared primarily by hepatic metabolism, and the clinical drug-drug interaction studies with strong CYP3A inducer and inhibitor substantiated the major role of CYP3A in the metabolism of abemaciclib. Due to significant changes in abemaciclib and active-metabolite exposure in the presence of strong CYP3A inducers and inhibitors, concomitant use with abemaciclib should be avoided, or abemaciclib dose may require adjustment. [3]
Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) have recently entered the therapeutic armamentarium of clinical oncologists, and show promising activity in patients with breast and other cancers. Although their chief mechanism of action is inhibition of retinoblastoma (RB) protein phosphorylation and thus the induction of cell cycle arrest, CDK4/6 inhibitors alter cancer cell biology in other ways that can also be leveraged for therapeutic benefit. These include modulation of mitogenic kinase signaling, induction of a senescence-like phenotype, and enhancement of cancer cell immunogenicity. We describe here the less-appreciated effects of CDK4/6 inhibitors on cancer cells, and suggest ways by which they might be exploited to enhance the benefits of these agents for cancer patients. [4]
CDK4/6 inhibitors are approved to treat breast cancer and are in trials for other malignancies. We examined CDK4/6 inhibition in mouse and human CD8+ T cells during early stages of activation. Mice receiving tumor-specific CD8+ T cells treated with CDK4/6 inhibitors displayed increased T-cell persistence and immunologic memory. CDK4/6 inhibition upregulated MXD4, a negative regulator of MYC, in both mouse and human CD8+ T cells. Silencing of Mxd4 or Myc in mouse CD8+ T cells demonstrated the importance of this axis for memory formation. We used single-cell transcriptional profiling and T-cell receptor clonotype tracking to evaluate recently activated human CD8+ T cells in patients with breast cancer before and during treatment with either palbociclib or abemaciclib. CDK4/6 inhibitor therapy in humans increases the frequency of CD8+ memory precursors and downregulates their expression of MYC target genes, suggesting that CDK4/6 inhibitors in patients with cancer may augment long-term protective immunity. SIGNIFICANCE: CDK4/6 inhibition skews newly activated CD8+ T cells toward a memory phenotype in mice and humans with breast cancer. CDK4/6 inhibitors may have broad utility outside breast cancer, particularly in the neoadjuvant setting to augment CD8+ T-cell priming to tumor antigens prior to dosing with checkpoint blockade.This article is highlighted in the In This Issue feature, p. 2355.[5]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C25H29CLF2N8O
Molecular Weight
531.000570058823
Exact Mass
530.212
CAS #
2704316-82-3
Related CAS #
Abemaciclib metabolite M18-d8;Abemaciclib metabolite M18;2704316-81-2
PubChem CID
145925653
Appearance
Off-white to light yellow solid powder
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
10
Rotatable Bond Count
7
Heavy Atom Count
37
Complexity
701
Defined Atom Stereocenter Count
0
InChi Key
WGFYSOPSZMTSSV-UHFFFAOYSA-N
InChi Code
InChI=1S/C25H28F2N8O.ClH/c1-15(2)35-20-10-17(9-18(26)24(20)32-22(35)14-36)23-19(27)12-30-25(33-23)31-21-4-3-16(11-29-21)13-34-7-5-28-6-8-34;/h3-4,9-12,15,28,36H,5-8,13-14H2,1-2H3,(H,29,30,31,33);1H
Chemical Name
[4-fluoro-6-[5-fluoro-2-[[5-(piperazin-1-ylmethyl)pyridin-2-yl]amino]pyrimidin-4-yl]-1-propan-2-ylbenzimidazol-2-yl]methanol;hydrochloride
Synonyms
Abemaciclib metabolite M18 hydrochloride; 2704316-82-3; Abemaciclib metabolite M18 (hydrochloride); LSN3106729 (hydrochloride); EX-A8463; CDK ligand for PROTAC hydrochloride;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : 125 mg/mL (235.40 mM)
H2O : 100 mg/mL (188.32 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 50 mg/mL (94.16 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.8832 mL 9.4162 mL 18.8324 mL
5 mM 0.3766 mL 1.8832 mL 3.7665 mL
10 mM 0.1883 mL 0.9416 mL 1.8832 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us