Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
Other Sizes |
|
Targets |
PKC-α (IC50 = 9 nM); PKC-βI (IC50 = 28 nM ); PKC-βII (IC50 = 31 nM) PKC-γ (IC50 = 37 nM); PKC-ε (IC50 = 108 nM)
|
---|---|
ln Vitro |
In peripheral human T-cells stimulated with phorbol ester in combination with phytohemagglutin or anti-CD3, bisindolylmaleimide XI hydrochloride (Ro 32-0432) inhibits IL-2 secretion, IL-2 receptor expression, and proliferation; however, it has no effect on IL-2-induced proliferation in cells that have already been stimulated to express IL-2 receptors. Bisindolylmaleimide XI hydrochloride likewise inhibits the proliferation of the influenza peptide antigen HA 307-319-specific human T-cell clone (HA27) following exposure to antigen-pulsed autologous presenting cells[2]. Retinal progenitor cells (RPCs) have a lower percentage of apoptotic cells (-21%) when PKC inhibition using Bisindolylmaleimide XI hydrochloride (Ro 32-0432; 1 μM) is used[3].
|
ln Vivo |
Oral administration of Bisindolylmaleimide XI hydrochloride prevents rats from developing edema after being exposed to phorbol ester. Bisindolylmaleimide XI hydrochloride also inhibits the induction of more physiologically T-cell driven responses, such as host versus graft responses and the secondary paw swelling in adjuvant-induced arthritis[2].
|
Enzyme Assay |
The protein kinase C (PKC) family of isoenzymes is believed to mediate a wide range of signal-transduction pathways in many different cell types. A series of bisindolylmaleimides have been evaluated as inhibitors of members of the conventional PKC family (PKCs-alpha, -beta, -gamma) and of a representative of the new, Ca(2+)-independent, PKC family, PKC-epsilon. In contrast with the indolocarbazole staurosporine, all the bisindolylmaleimides investigated showed slight selectivity for PKC-alpha over the other isoenzymes examined. In addition, bisindolylmaleimides bearing a conformationally restricted side-chain were less active as inhibitors of PKC-epsilon. Most noticeable of these was Ro 32-0432, which showed a 10-fold selectivity for PKC-alpha and a 4-fold selectivity for PKC-beta I over PKC-epsilon[1].
|
Cell Assay |
Several lines of circumstantial evidence support the assumption that protein kinase C (PKC) activation together with elevated levels of cytosolic Ca++ are necessary for T-cell activation and proliferation in response to a physiological stimulus, i.e., MHC class II restricted antigen presentation. By using a potent, cell-permeable and selective inhibitor of PKC, Ro 32-0432, we have tested this hypothesis. Ro 32-0432 inhibits interleukin-2 (IL-2) secretion, IL-2 receptor expression in, and proliferation of, peripheral human T-cells stimulated with phorbol ester together with phytohemagglutin or anti-CD3, but does not inhibit IL-2 induced proliferation in cells already stimulated to express IL-2 receptors. Proliferation of the influenza peptide antigen HA 307-319-specific human T-cell clone (HA27) after exposure to antigen-pulsed autologous presenting cells was also inhibited by Ro 32-0432[2].
|
Animal Protocol |
Oral administration of Ro 32-0432 inhibited subsequent phorbol ester-induced edema in rats demonstrating the systemic efficacy of the compound to inhibit PKC-driven responses. Induction of more physiologically T-cell driven responses such as host vs. graft responses and the secondary paw swelling in adjuvant-induced arthritis were also inhibited by Ro 32-0432. These data demonstrate the crucial role for PKC in T-cell activation and that selective p.o. bioavailable PKC inhibitors are efficacious in preventing T-cell driven chronic inflammatory responses in vivo. Inhibition of PKC represents an important mechanistic approach to prevent T-cell activation and compounds of this class may have important therapeutic applicability to chronic inflammatory and autoimmune diseases.[2]
|
References |
|
Additional Infomation |
Retinal progenitor cells (RPCs) are neural stem cells able to differentiate into any normal adult retinal cell type, except for pigment epithelial cells. Retinoic acid (RA) is a powerful growth/differentiation factor that generally causes growth inhibition, differentiation and/or apoptosis. In this study, we demonstrate that RA not only affects mouse RPC differentiation but also improves cell survival by reducing spontaneous apoptotic rate without affecting RPC proliferation. The enhanced cell survival was accompanied by a significant upregulation of the expression of protein kinase A (PKA) and several protein kinase C (PKC) isoforms. Treatment of cells grown in RA-free media with 8-bromoadenosine3',5'-cyclic monophosphate, a known activator of PKA, resulted in an anti-apoptotic effect similar to that caused by RA; whereas the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride led to a significant ( approximately 32%) increase in apoptosis. In contrast, treatment of RPCs with any of two PKC selective inhibitors, 2,2',3,3',4,4'-hexahydroxy-1,1'-biphenyl-6,6'-dimethanol dimethyl ether and bisindolylmaleimide XI, led to diminished apoptosis; while a PKC activator, phorbol 12-myristate 13-acetate, increased apoptosis. These and other data suggest that the effect of RA on RPC survival is mostly due to the increased anti-apoptotic activity elicited by PKA, which might in turn be antagonized by PKC. Such a mechanism is a new example of tight regulation of important biological processes triggered by RA. Although the detailed mechanisms remain to be elucidated, we provide evidence that the pro-survival effect of RA on RPCs is not mediated by changed expression of p53 or bcl-2, and appears to be independent of beta-amyloid, Fas ligand, TNF-alpha, ganglioside GM1 and ceramide C16-induced apoptotic pathways.[3]
|
Molecular Formula |
C28H29CLN4O2
|
---|---|
Molecular Weight |
489.01
|
Exact Mass |
488.197
|
Elemental Analysis |
C, 68.77; H, 5.98; Cl, 7.25; N, 11.46; O, 6.54
|
CAS # |
145333-02-4
|
Appearance |
Yellow to orange solid powder
|
LogP |
4.955
|
InChi Key |
FXGHOAZJQNLNFD-KRWDZBQOSA-N
|
InChi Code |
InChI=1S/C28H28N4O2/c1-30(2)15-17-12-13-32-22-11-7-5-9-19(22)24(23(32)14-17)26-25(27(33)29-28(26)34)20-16-31(3)21-10-6-4-8-18(20)21/h4-11,16-17H,12-15H2,1-3H3,(H,29,33,34)/t17-/m0/s1
|
Chemical Name |
3-[8-[(Dimethylamino)methyl]-6,7,8,9-tetrahydropyrido[1,2-a]indol-3-yl]-4-(1-methylindol-3-yl)pyrrole-2,5-dione hydrochloride
|
Synonyms |
151342-35-7; Ro-32-0432; ro 32-0432; (S)-3-(8-(Dimethylaminomethyl)-6,7,8,9-tetrahydropyrido(1,2-a)indol-10-yl)-4-(1-methyl-3-indolyl)-1H-pyrrole-2,5-dione hydrochloride; CHEMBL26501; RO-320432; (S)-3-(8-((Dimethylamino)methyl)-6,7,8,9-tetrahydropyrido(1,2-a)indol-10-yl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrol-2,5-dione; (S)-Ro 32-0432 (free base);
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.0449 mL | 10.2247 mL | 20.4495 mL | |
5 mM | 0.4090 mL | 2.0449 mL | 4.0899 mL | |
10 mM | 0.2045 mL | 1.0225 mL | 2.0449 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.