Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
ln Vitro |
With EC50s of 34.14 μM, >50 μM, and 2.58 μM, respectively, Bongkrekic Acid (0-50 μM; 48 hours) induces formazan production in MDA-MB-231, MCF-7, and LTED cells. In LTED cells and parental MCF-7 cells, bongkrekic acid (0.1–25 μM; 48 hours) decreases viable cell numbers in a dose-dependent manner [1].
|
---|---|
References |
|
Additional Infomation |
Bongkrekic acid is a tricarboxylic acid that is docosa-2,4,8,10,14,18,20-heptaenedioic acid substituted at positions 2 ,5 and 17 by methyl groups, at positions 6 by a methoxy group and at position 20 by a carboxymethyl group. It is produced by the bacterium Burkholderia gladioli and implicated in outbreaks of food-borne illness involving coconut and corn-based products in Indonesia and China. It has a role as an apoptosis inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, a toxin, an ATP/ADP translocase inhibitor and a bacterial metabolite. It is a tricarboxylic acid, an ether and an olefinic compound. It is a conjugate acid of a bongkrekate(3-).
Bongkrekic acid has been reported in Burkholderia gladioli with data available. An antibiotic produced by Pseudomonas cocovenenans. It is an inhibitor of MITOCHONDRIAL ADP, ATP TRANSLOCASES. Specifically, it blocks adenine nucleotide efflux from mitochondria by enhancing membrane binding. Mechanism of Action Bongkrekic acid (BKA) is an inhibitor of adenine nucleotide translocase (ANT). Since inhibition of ANT is connected to the inhibition of cytochrome c release from mitochondria, which then results in the suppression of apoptosis, it has been used as a tool for the mechanistic investigation of apoptosis. BKA consists of a long carbon chain with two asymmetric centers, a nonconjugated olefin, two conjugated dienes, three methyl groups, a methoxyl group, and three carboxylic acids. This complicated chemical structure has caused difficulties in synthesis, supply, and biochemical mechanistic investigations. Bongkrekic acid (BA) has a unique mechanism of toxicity among the mitochondrial toxins: it inhibits adenine nucleotide translocase (ANT) rather than the electron transport chain. Bongkrekic acid is produced by the bacterium Burkholderia gladioli pathovar cocovenenans (B. cocovenenans) which has been implicated in outbreaks of food-borne illness involving coconut- and corn-based products in Indonesia and China. |
Molecular Formula |
C28H38O7
|
---|---|
Molecular Weight |
486.59712
|
Exact Mass |
486.262
|
CAS # |
11076-19-0
|
PubChem CID |
6433556
|
Appearance |
Colorless to light yellow liquid
|
Density |
1.114g/cm3
|
Boiling Point |
715.1ºC at 760mmHg
|
Melting Point |
50-60°
|
Flash Point |
231ºC
|
Index of Refraction |
1.545
|
LogP |
5.885
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
7
|
Rotatable Bond Count |
17
|
Heavy Atom Count |
35
|
Complexity |
898
|
Defined Atom Stereocenter Count |
2
|
SMILES |
OC(C/C(/C=C/[C@H](C/C=C/CC/C=C/C=C/C[C@H](/C(=C/C=C(/C(=O)O)\C)/C)OC)C)=C\C(=O)O)=O
|
InChi Key |
SHCXABJSXUACKU-WUTQZGRKSA-N
|
InChi Code |
InChI=1S/C28H38O7/c1-21(15-18-24(19-26(29)30)20-27(31)32)13-11-9-7-5-6-8-10-12-14-25(35-4)22(2)16-17-23(3)28(33)34/h6,8-12,15-19,21,25H,5,7,13-14,20H2,1-4H3,(H,29,30)(H,31,32)(H,33,34)/b8-6+,11-9+,12-10-,18-15+,22-16-,23-17+,24-19+/t21-,25+/m0/s1
|
Chemical Name |
(2E,4Z,6R,8Z,10E,14E,17S,18E,20Z)-20-(carboxymethyl)-6-methoxy-2,5,17-trimethyldocosa-2,4,8,10,14,18,20-heptaenedioic acid
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.0551 mL | 10.2754 mL | 20.5508 mL | |
5 mM | 0.4110 mL | 2.0551 mL | 4.1102 mL | |
10 mM | 0.2055 mL | 1.0275 mL | 2.0551 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.