yingweiwo

CPI-455 hydrochloride

Alias: CPI-455 hydrochloride; 2095432-28-1; CPI-455 HCl; CPI-455 (hydrochloride); 6-Isopropyl-7-oxo-5-phenyl-4,7-dihydropyrazolo[1,5-a]pyrimidine-3-carbonitrile hydrochloride; 7-oxo-5-phenyl-6-propan-2-yl-1H-pyrazolo[1,5-a]pyrimidine-3-carbonitrile;hydrochloride; CPI-455 HCl?; CPI-455?;
Cat No.:V10836 Purity: ≥98%
CPI-455 HCl is a specific pan-KDM5 inhibitor (antagonist) with IC50 of 10 nM for KDM5A.
CPI-455 hydrochloride
CPI-455 hydrochloride Chemical Structure CAS No.: 2095432-28-1
Product category: Histone Demethylase
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of CPI-455 hydrochloride:

  • CPI-455
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
CPI-455 HCl is a specific pan-KDM5 inhibitor (antagonist) with IC50 of 10 nM for KDM5A. CPI-455 HCl mediates KDM5 inhibition, increases the overall level of H3K4me3, and reduces the persistence of drug resistance in multiple tumor cell line models. The number of cancer cells.
Biological Activity I Assay Protocols (From Reference)
Targets
KDM5
ln Vitro
In several cancer cell line models treated with conventional chemotherapy or targeted medications, CPI-455 hydrochloride diminishes the frequency of DTPs, enhances total levels of H3K4 trimethylation (H3K4me3), and mediates KDM5 inhibition [1]. The target KDM5 protein is highly affinized for CPI-455 hydrochloride. Within 24 hours of exposure to either of the two active drugs, CPI-455 and CPI-766, a dose-dependent elevation in H3K4me3 was seen. Three luminal breast cancer cell lines, MCF-7, T-47, and EFM-19, had computed IC50 values of 35.4, 26.19, and 16.13 μM for KDM5 Inhibitor CPI0455, respectively [2].
ln Vivo
Mice can develop protective immunity when B7-H4 and KDM5B are double blocked (CPI-455 hydrochloride, 50/70 mg/kg, intraperitoneal injection, daily) [2].
Enzyme Assay
The KDM5 family of histone demethylases catalyzes the demethylation of histone H3 on lysine 4 (H3K4) and is required for the survival of drug-tolerant persister cancer cells (DTPs). Here we report the discovery and characterization of the specific KDM5 inhibitor CPI-455. The crystal structure of KDM5A revealed the mechanism of inhibition of CPI-455 as well as the topological arrangements of protein domains that influence substrate binding. CPI-455 mediated KDM5 inhibition, elevated global levels of H3K4 trimethylation (H3K4me3) and decreased the number of DTPs in multiple cancer cell line models treated with standard chemotherapy or targeted agents. These findings show that pretreatment of cancer cells with a KDM5-specific inhibitor results in the ablation of a subpopulation of cancer cells that can serve as the founders for therapeutic relapse[1].
Cell Assay
Chemotaxis assay[3] CD8+ lymphocytes were selected from PBMCs by negative selection using magnetic beads and cultured with anti-CD3/anti-CD28–coated beads for 7 days to generate CD8+ effector cells. These cells were loaded into the upper chambers of transwell inserts (5.0-μm pore size). In the bottom well, medium containing different amounts of neutralization antibodies to chemokines, or culture supernatant from P. gingivalis–infected cell lines (Kyse-410 and Kyse-150), was added. The KDM5B inhibitor CPI-455 was used. For antibody blocking assays, neutralization anti-CXCL9 (MAB392), anti-CXCL10 (MAB266), and anti-CXCL11 were added into culture supernatants and incubated at 37°C for 30 minutes before adding into T cells. The contents of the lower chamber were collected, and the percentage of CD8+ cells was determined by FACS.
Animal Protocol
Animal/Disease Models: Sixweeks old male C57BL/6 mice (One- to 2-mm fragments of P. gingivalis–positive PDXs were implanted subcutaneously (sc) into the flank region of humanized mice.)
Doses: 50 mg/kg or 70 mg/ kg (combined with anti–B7-H4).
Route of Administration: IP, daily, 14-28 days.
Experimental Results: Histopathology analysis revealed no inflammation in either group at 2 weeks in response to the primary infection. However, at 8 weeks after inoculation, mice receiving monotherapy demonstrated mild inflammation, whereas the combined treatment presented with heavy to severe inflammation, which persisted at 12 and 16 weeks after challenge. Treatment with CPI-455 to selectively target H3K4-specific JmjC demethylases increased CXCL11, CXCL9, and CXCL10 following infection , with maximum levels observed 48 hrs (hours) after infection.
In vivo tumor studies[3]
One- to 2-mm fragments of P. gingivalis–positive PDXs were implanted subcutaneously into the flank region of humanized mice. After injection, the mice were randomly divided into different groups (n = 10/group). Mice were treated with CPI-455 (50 mg/kg or 70 mg/kg, daily, intraperitoneal injection) and anti–B7-H4 (188; 500 μg/mouse, weekly, intraperitoneal injection), followed by the sequential administration of CPI-455 and anti–B7-H4 Ab started on days 6 and 20, respectively; phased combined treatment for 14 days with CPI-455 started on day 6 and combined treatment with anti–B7-H4 Ab started on day 13 and continuing for 3 weeks; or extended phased combined treatment with CPI-455 for 28 days. The animals dosed according to the appropriate schema (n = 10 mice/group) were monitored daily for up to 2 months, and the objective response rate and survival were recorded.[3]
An additional cohort of mice (n = 5/group) was included to conduct mechanistic studies. In this cohort, the mice were sacrificed on day 30 after tumor inoculation. Residual tumors were surgically removed before terminal escape (tumor with partial response, PR) or complete remission (tumor with complete response) and processed for IHC and flow cytometry analysis. IHC and flow cytometry results related to lymphocyte infiltration were determined, and a representative mouse from each treatment group [(i) animals receiving control therapy, (ii) animals receiving anti–B7-H4 Ab monotherapy, (iii) animals receiving 75 mg/kg CPI-455 monotherapy, and (iv) animals treated with extended phased therapy using 75 mg/kg dose CPI-455] in this separate cohort is shown, TV (mm3) = π/6 × length × width2. Mice suffering from progressive disease or those used for subsequent analysis were euthanized when the TV was more than 2,500 mm3.
References

[1]. An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells. Nat Chem Biol. 2016 Jul;12(7):531-8.

[2]. Benjamin R. Leadem. NOVEL HISTONE DEMETHYLASE INHIBITORS SYNERGISTICALLY.

[3]. Blockade of Immune-Checkpoint B7-H4 and Lysine Demethylase 5B in Esophageal Squamous Cell Carcinoma Confers Protective Immunity against P. gingivalis Infection. Cancer Immunol Res. 2019 Sep;7(9):1440-1456.

Additional Infomation
Pathogens are capable of hijacking immune defense mechanisms, thereby creating a tolerogenic environment for hypermutated malignant cells that arise within the site of infection. Immune checkpoint-oriented immunotherapies have shown considerable promise. Equally important, the epigenetic reprogramming of an immune-evasive phenotype that activates the immune system in a synergistic manner can improve immunotherapy outcomes. These advances have led to combinations of epigenetic- and immune-based therapeutics. We previously demonstrated that Porphyromonas gingivalis isolated from esophageal squamous cell carcinoma (ESCC) lesions represents a major pathogen associated with this deadly disease. In this study, we examined the mechanisms associated with host immunity during P. gingivalis infection and demonstrated that experimentally infected ESCC responds by increasing the expression of B7-H4 and lysine demethylase 5B, which allowed subsequent in vivo analysis of the immunotherapeutic effects of anti-B7-H4 and histone demethylase inhibitors in models of chronic infection and immunity against xenografted human tumors. Using three different preclinical mouse models receiving combined therapy, we showed that mice mounted strong resistance against P. gingivalis infection and tumor challenge. This may have occurred via generation of a T cell-mediated response in the microenvironment and formation of immune memory. In ESCC subjects, coexpression of B7-H4 and KDM5B correlated more significantly with bacterial load than with the expression of either molecule alone. These results highlight the unique ability of P. gingivalis to evade immunity and define potential targets that can be exploited therapeutically to improve the control of P. gingivalis infection and the development of associated neoplasia.[3]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C16H15CLN4O
Molecular Weight
314.77
Exact Mass
314.093
CAS #
2095432-28-1
Related CAS #
CPI-455;1628208-23-0
PubChem CID
129896721
Appearance
Typically exists as solid at room temperature
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
2
Heavy Atom Count
22
Complexity
611
Defined Atom Stereocenter Count
0
SMILES
O=C1C(=C(C2C=CC=CC=2)N=C2C(C#N)=CNN12)C(C)C.Cl
InChi Key
SNODPNXOTKXHHH-UHFFFAOYSA-N
InChi Code
InChI=1S/C16H14N4O.ClH/c1-10(2)13-14(11-6-4-3-5-7-11)19-15-12(8-17)9-18-20(15)16(13)21;/h3-7,9-10,18H,1-2H3;1H
Chemical Name
7-oxo-5-phenyl-6-propan-2-yl-1H-pyrazolo[1,5-a]pyrimidine-3-carbonitrile;hydrochloride
Synonyms
CPI-455 hydrochloride; 2095432-28-1; CPI-455 HCl; CPI-455 (hydrochloride); 6-Isopropyl-7-oxo-5-phenyl-4,7-dihydropyrazolo[1,5-a]pyrimidine-3-carbonitrile hydrochloride; 7-oxo-5-phenyl-6-propan-2-yl-1H-pyrazolo[1,5-a]pyrimidine-3-carbonitrile;hydrochloride; CPI-455 HCl?; CPI-455?;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.1769 mL 15.8846 mL 31.7692 mL
5 mM 0.6354 mL 3.1769 mL 6.3538 mL
10 mM 0.3177 mL 1.5885 mL 3.1769 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us