Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
α±-glucosidase
|
---|---|
ln Vitro |
Twenty-six common peaks were assigned and identified from the fingerprints of different proportions DJS extracts. In vitro experimental results showed that DJS extracts inhibited inflammation and release of CGRP from trigeminal nerve cells. Five predicted active compounds, Chrysin 6-C-arabinoside 8-C-glucoside, Chrysin 6-C-glucoside 8-C-arabinoside, baicalin, Chrysin-7-O-Beta-D-glucoronide and Oroxylin A 7-O-glucuronide were sorted out according to spectrum-effect relationship analysis and molecular docking comprehensively. In vitro validation experiments showed that all the predicted compounds inhibited the CGRP releasing and the activation of TRPV1 channel. Baicalin, chrysin-7-O-β-D-glucuronide and Oroxylin A-7-glucoronide significantly inhibited the activation of TRPV1 channel.
Conclusion: Chrysin 6-C-arabinoside 8-C-glucoside, Chrysin 6-C-glucoside 8-C-arabinoside, baicalin, Chrysin-7-O-Beta-D-glucoronide and Oroxylin A 7-O-glucuronide which can inhibit the CGRP releasing and the activation of TRPV1 channel were screened as the anti-migraine active compounds by spectrum-effect relationship analysis and molecular docking. https://pubmed.ncbi.nlm.nih.gov/34161797/
|
Enzyme Assay |
Aim of the study: This study aimed to uncover the anti-migraine active compounds from DJS and preliminary predicted the pharmacological mechanism by evaluating the spectrum-effect relationship between high-performance liquid chromatography (HPLC) fingerprints and anti-migraine effects of Duijinsan (DJS) extract combined with molecular docking.
Materials and methods: HPLC and LC-MS were applied for chemical analyses of DJS extracts in different proportions. Inhibition of DJS extracts on trigeminal nerve cell releasing calcitonin gene related peptide (CGRP) experiment was performed. The active compounds were screened by spectrum-effect relationship analysis and confirmed by molecular docking and the activities of major predicted compounds were validated in vitro. https://pubmed.ncbi.nlm.nih.gov/34161797/
|
References | |
Additional Infomation |
Chrysin 6-C-arabinoside 8-C-glucoside has been reported in Scutellaria baicalensis with data available.
|
Molecular Formula |
C26H28O13
|
---|---|
Exact Mass |
548.152
|
CAS # |
185145-33-9
|
PubChem CID |
21722008
|
Appearance |
Typically exists as solid at room temperature
|
LogP |
-1.8
|
Hydrogen Bond Donor Count |
9
|
Hydrogen Bond Acceptor Count |
13
|
Rotatable Bond Count |
4
|
Heavy Atom Count |
39
|
Complexity |
908
|
Defined Atom Stereocenter Count |
9
|
SMILES |
C1[C@@H]([C@@H]([C@H]([C@@H](O1)C2=C(C(=C3C(=C2O)C(=O)C=C(O3)C4=CC=CC=C4)[C@H]5[C@@H]([C@H]([C@@H]([C@H](O5)CO)O)O)O)O)O)O)O
|
InChi Key |
NZZNHGSHLAHPCG-VYUBKLCTSA-N
|
InChi Code |
InChI=1S/C26H28O13/c27-7-13-18(31)21(34)23(36)26(39-13)16-20(33)15(25-22(35)17(30)11(29)8-37-25)19(32)14-10(28)6-12(38-24(14)16)9-4-2-1-3-5-9/h1-6,11,13,17-18,21-23,25-27,29-36H,7-8H2/t11-,13+,17-,18+,21-,22+,23+,25-,26-/m0/s1
|
Chemical Name |
5,7-dihydroxy-2-phenyl-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one
|
Synonyms |
Chrysin 6-C-arabinoside 8-C-glucoside; 185145-33-9; 5,7-dihydroxy-2-phenyl-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one; AKOS040760325; Chrysina6-C-arabinosidea8-C-glucoside; FS-7639; E87098; 5,7-Dihydroxy-2-phenyl-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-6-((2S,3R,4S,5S)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)-4H-chromen-4-one
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.