yingweiwo

Fosmanogepix (APX-001; E-1211)

Alias: Fosmanogepix; 2091769-17-2; APX001; Fosmanogepix [INN]; Fosmanogepix [USAN]; APX-001; 1XQ871489P; E1211;
Cat No.:V51185 Purity: ≥98%
Fosmanogepix (APX001) is a broad-spectrum antifungal agent against fungal infections.
Fosmanogepix  (APX-001; E-1211)
Fosmanogepix (APX-001; E-1211) Chemical Structure CAS No.: 2091769-17-2
Product category: Fungal
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Fosmanogepix (APX-001; E-1211):

  • APX001A (Manogepix; E 1210)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Fosmanogepix (APX001) is a broad-spectrum antifungal agent against fungal infections. Fosmanogepix (APX001) targets the insulating Gwt1 enzyme required for glycosylphosphatidylinositol mannan localization in fungi. This inhibits the proper localization of cell wall mannan proteins, thereby impairing cell wall formation, biofilm formation, root Tube formation and fungal growth. Can be used for research on low-risk fungal infections.
Biological Activity I Assay Protocols (From Reference)
Targets
Gwt1 enzyme
ln Vitro
Fosmanogepix (APX001) has a minimum effective dose of 0.008-0.25 μg/ml to suppress the development of Aspergillus fumigatus, Candida albicans, Clostridium neoformans, and Clostridium gattii over a 40-72 hour period[1].Cryptococcal meningitis (CM), caused primarily by Cryptococcus neoformans, is uniformly fatal if not treated. Treatment options are limited, especially in resource-poor geographical regions, and mortality rates remain high despite current therapies. Here we evaluated the in vitro and in vivo activity of several compounds, including APX001A and its prodrug, APX001, currently in clinical development for the treatment of invasive fungal infections. These compounds target the conserved Gwt1 enzyme that is required for the localization of glycosylphosphatidylinositol (GPI)-anchored cell wall mannoproteins in fungi. The Gwt1 inhibitors had low MIC values, ranging from 0.004 μg/ml to 0.5 μg/ml, against both C. neoformans and C. gattii. APX001A and APX2020 demonstrated in vitro synergy with fluconazole (fractional inhibitory concentration index, 0.37 for both). [1]
APX001A inhibited the growth of A. fumigatus with a minimum effective concentration of 0.03 μg/ml. [2]
ln Vivo
Fosmanogepix (APX001) (390 mg/kg, po, three times daily) lowers burden in the Swedish cryptococcal meningitis (CM) model [1]. Fosmanogepix (APX001) (100 mg/kg, mantra)
In a CM model, APX001 and fluconazole each alone reduced the fungal burden in brain tissue (0.78 and 1.04 log10 CFU/g, respectively), whereas the combination resulted in a reduction of 3.52 log10 CFU/g brain tissue. Efficacy, as measured by a reduction in the brain and lung tissue fungal burden, was also observed for another Gwt1 inhibitor prodrug, APX2096, where dose-dependent reductions in the fungal burden ranged from 5.91 to 1.79 log10 CFU/g lung tissue and from 7.00 and 0.92 log10 CFU/g brain tissue, representing the nearly complete or complete sterilization of lung and brain tissue at the higher doses. These data support the further clinical evaluation of this new class of antifungal agents for the treatment of CM.[1]
The use of 50 mg/kg 1-aminobenzotriazole (ABT), a suicide inhibitor of cytochrome P450 enzymes, enhanced APX001A exposures (area under the time-concentration curve [AUC]) 16- to 18-fold and enhanced serum half-life from ∼1 to 9 h, more closely mimicking human pharmacokinetics. We evaluated the efficacy of APX001 (with ABT) in treating murine IPA compared to posaconazole treatment. Treatment of mice with 78 mg/kg once daily (QD), 78 mg/kg twice daily, or 104 mg/kg QD APX001 significantly enhanced the median survival time and prolonged day 21 postinfection overall survival compared to the placebo. Furthermore, administration of APX001 resulted in a significant reduction in lung fungal burden (4.2 to 7.6 log10 conidial equivalents/g of tissue) versus the untreated control and resolved the infection, as judged by histopathological examination. The observed survival and tissue clearance were comparable to a clinically relevant posaconazole dose. These results warrant the continued development of APX001 as a broad-spectrum, first-in-class treatment of invasive fungal infections.[2]
Enzyme Assay
Antifungal susceptibility testing. [1]
To establish the antimicrobial activity of the APX001A analogs, broth microdilution susceptibility testing was performed according to Clinical and Laboratory Standards Institute (CLSI) guidelines M27-A3 for yeasts and M38-A2 for molds. APX001A and analogs were first diluted in DMSO to obtain intermediate dilutions. These were further diluted in microtiter plates to obtain a final concentration of 2 to 0.002 μg/ml. One microliter of DMSO was added to the no-drug control wells. The solutions were mixed on a plate shaker for 10 min, and the plates were incubated at 35°C for 40 to 48 h (C. albicans, A. fumigatus) and 72 h (C. neoformans). The minimum concentration that led to a 50% reduction in fungal growth compared to that for the control (determined with the aid of a reading mirror) was determined as the MIC for C. albicans and C. neoformans. The minimum concentration that led to the shortening of hyphae compared to the hyphal growth in DMSO control wells was determined as the minimum effective concentration (MEC) for A. fumigatus (as read for the echinocandins). The use of the MIC and MEC endpoints for APX001A (formerly E1210) against yeasts and molds, respectively, has been described previously. For the cryptococcal synergy studies, APX001A and APX2020 MIC values were read at 50% inhibition.
Cell Assay
To establish the antimicrobial activity of APX001A analogs, broth microdilution susceptibility testing was performed according to CLSI guideline M38-A2 for molds. APX001A were first diluted in dimethyl sulfoxide (DMSO) to obtain intermediate dilutions. These were further diluted in microtiter plates to obtain a final concentration of 0.002 to 2 μg/ml. The, 1 μl of DMSO was added to “no drug” control wells. The solutions were mixed on a plate shaker for 10 min, and plates were incubated at 35°C for 40 to 48 h. The minimum concentration that led to shortening of hyphae compared to hyphal growth in DMSO control wells was determined as the MEC for A. fumigatus (as read for echinocandins). Similar methods were used to determine the effect of ABT on the growth of A. fumigatus, with the exception that DMSO was not used because ABT is a water-soluble molecule. The range of ABT concentrations was 0.016 to 16 μg/ml in one study and 0.25 to 250 μg/ml in a follow-up study. The use of the MIC and MEC endpoints for APX001A (formerly E1210) against yeasts and molds, respectively, has been described previously. Standard checkerboard assays were utilized to evaluate synergy between ABT and APX001A on A. fumigatus MYA3626 (APX001A concentrations ranged from 0.0005 to 0.125 μg/ml; ABT concentrations ranged from 0.016 to 16 μg/ml). Inhibition endpoints for the synergy assay were read using the MEC value, as read for assessment of the activity of APX001A against molds. [2]
Animal Protocol
Animal/Disease Models: CD-1 mice [1]
Doses: 100 mg/kg
Route of Administration: intraperitoneal (ip) injection
Experimental Results: The half-life of the active part APX001A was extended from 1.3 hrs (hrs (hours)) to 8.8 hrs (hrs (hours)), increasing the area under the curve (AUC) 9 times.
Pharmacokinetic analysis. [1]
Single-dose PK experiments were performed in healthy male CD-1 mice following i.p. or oral dosing of 26 mg/kg of the prodrugs APX001, APX2096, APX2097, and APX2104. In half of the cohorts, mice received a single oral dose of 100-mg/kg ABT at 2 h prior to prodrug dosing. Plasma was collected at 0.083, 0.5, 2, 4, 8, and 24 h postdose (n = 3 per time point). The area under the curve (AUC) was calculated from time zero to the time of the last measurable concentration. The active metabolite concentrations in plasma (APX001A, APX2039, APX2020, and APX2041) were determined by liquid chromatography-tandem mass spectrometry. PK parameters were determined using Phoenix WinNonlin (v7.0) software and a noncompartmental model. Samples with concentrations that were below the limit of quantification (0.5 or 1 ng/ml) were not used in the calculation of averages.
IPA model. [2]
The IPA model was performed as previously described. Briefly, immunosuppressed mice were challenged with A. fumigatus in an inhalation chamber by aerosolizing 12 ml of a 1 × 109 ml suspension of conidia with a small particle nebulizer driven by compressed air. A standard exposure time of 1 h was used for all experiments. Immediately after infection, a subset of the mice was sacrificed, and the lungs were removed for quantitative culture. Mice were rendered neutropenic using a regimen of 200 mg/kg cyclophosphamide and 500 mg/kg cortisone acetate 2 days before and on day 3 relative to infection. To prevent bacterial infection, mice were given Baytril (50 μg/ml of enrofloxacin; Bayer) added to the drinking water from day –3 to day 0. Ceftazidime (5 μg/dose/0.2 ml) replaced Baytril treatment on day 0 and was administered daily by subcutaneous injection from day 0 until day 8. We administered 50 mg/kg ABT orally 2 h before the administration of APX001 for 7 days. Posaconazole (20 mg/kg QD or 30 mg/kg BID) was administered orally for 7 days. Survival was monitored through day 21. Mice were given free access to water and standard laboratory diet. All drug treatments were initiated 16 h postinfection and continued for 8 consecutive days given by oral gavage.
ADME/Pharmacokinetics
Analysis of AUC values versus the change in the number of log10 CFU per gram of tissue. The three compounds evaluated in the efficacy model had MIC values for the infecting strain (C. neoformans H99) that differed by 8- to 32-fold: for APX001A, 0.25 μg/ml; for APX2020, 0.031 μg/ml; and for APX2039, 0.008 μg/ml (Table 1). The data in Table 3 show that AUC values after i.p. dosing (plus ABT) ranged from 24.3 to 97.3 μg · h/ml, representing a 4-fold difference. To understand the influence of AUC-versus-MIC differences, we assessed the magnitude of changes in the number of log10 CFU/g of tissue across the three experiments.[1]
AUC values across the three experiments for APX001 (with or without ABT) ranged from 7.0 μg · h/ml (7.5-mg/kg APX001 QD plus ABT) to 196.3 μg · h/ml (390 mg/kg TID). At an AUC of 196.3 μg · h/ml, a modest but significant reduction in the lung burden was observed (1.5 log10 CFU/g). Lower AUC values were not efficacious. AUC values ranged from 10.0 to 116.4 μg · h/ml for APX2097 and from 27 to 224.3 μg · h/ml for APX2096. We compared the efficacy of the three compounds at a dose that gave rise to AUC values of approximately 80 µg · h/ml. In the presence of ABT, doses of 20-mg/kg APX2096, 60-mg/kg APX2097, and 80-mg/kg APX001 resulted in very similar AUC values of 74.8, 82.1, and 79.4 μg · h/ml, respectively. However, the reductions were 2.95, 1.45, and 0.85 log10 CFU/g, respectively, in brain and 3.69, 1.55, and 0.9 log10 CFU/g, respectively, in lung. Thus, despite the same AUC values for the 3 compounds, better efficacy was associated with lower MIC values (0.008 μg/ml, 0.031 μg/ml, and 0.25 μg/ml, respectively), suggesting that improved microbiological activity largely accounts for improved efficacy.[1]
The PK of APX001A after oral administration of 26 mg/kg of the prodrug APX001 (equivalent to 20 mg/kg of the active moiety APX001A using a conversion factor of 1.3 to account for the methyl phosphate group) were compared with and without the administration of ABT given 2 h prior to APX001 dosing. ABT doses were tested at 25, 50, and 100 mg/kg once daily (QD) and at 50 mg/kg twice daily (BID). Consistent with our previous findings (17), administration of ABT at 100 mg/kg QD resulted in a 15-fold increase in the average APX001A AUClast (area under the plasma concentration-time curve from time zero to time of last measurable concentration) in male CD-1 mice when the prodrug APX001 was dosed at 26 mg/kg (Table 1). Interestingly, this increase in AUClast was maintained when ABT was dosed at 50 mg/kg QD or BID (16.3- or 15-fold versus the no-ABT control, P > 0.62 for all ABT comparison regimens) (Table 1), suggesting that this lower dose of ABT is as efficient as the 100-mg/kg ABT dose in enhancing APX001A AUClast. In contrast, the 25-mg/kg QD dose of ABT resulted in a lower APX001A AUC value that was statistically significant from the 50-mg/kg QD dose (P = 0.02), although a 12.8-fold increase in the AUC value versus the no-ABT control was observed (P = 0.0002) (Table 1).[2]
Since higher APX001 doses could potentially be utilized in efficacy models, it was important to understand the linearity of AUC values while utilizing ABT. Thus, the PK of APX001A after the administration of 52 mg/kg APX001 prodrug (equivalent to 40 mg/kg of the active moiety APX001A) was evaluated in the presence of different doses of ABT. The data in Table 1 show that the administration of ABT at 50 mg/kg BID and 50 mg/kg QD resulted in similar APX001A AUC values (92.41 ± 7.70 and 94.29 ± 12.43, respectively), which translated into a 17.4- to 17.8-fold increase in AUC versus the no-ABT control (5.30 ± 0.98) (P < 0.0003). In contrast, the 25-mg/kg QD ABT dose resulted in a lower APX001A AUC value (52.00 ± 35.46), representing a 9.8-fold increase versus the no-ABT control (Table 1).[1]
The AUC values obtained after dosing 52 mg/kg APX001 plus 50 mg/kg ABT (QD or BID) were ∼2-fold higher than the parallel values obtained when 26 mg/kg APX001 was dosed (P > 0.14), consistent with dose linearity, at least within that dosing range. We chose to use the lowest, optimal dose of ABT at a 50-mg/kg QD dose in conjunction with the oral administration of APX001 in the subsequent A. fumigatus mouse model experiments.[2]
References

[1]. In Vitro and In Vivo Evaluation of APX001A/APX001 and Other Gwt1 Inhibitors against Cryptococcus. Antimicrob Agents Chemother. 2018 Jul 27;62(8). pii: e00523-18.

[2]. APX001 Is Effective in the Treatment of Murine Invasive Pulmonary Aspergillosis. Antimicrob Agents Chemother. 2019 Jan 29;63(2). pii: e01713-18.

[3]. In Vitro and In Vivo Evaluation of APX001A/APX001 and Other Gwt1 Inhibitors against Cryptococcus. Antimicrob Agents Chemother. 2018 Jul 27;62(8):e00523-18.

Additional Infomation
Fosmanogepix is under investigation in clinical trial NCT03604705 (An Efficacy and Safety Study of APX001 in Non-Neutropenic Patients With Candidemia).
Fosmanogepix is an orally available small molecule inhibitor of the Gwt1 fungal enzyme with potential antifungal activity. Upon administration, fosmanogepix, a N-phosphonooxymethyl prodrug, is rapidly and completely metabolized by systemic alkaline phosphatases to its active moiety, APX001A (E1210). The active prodrug targets Gwt1, a highly conserved inositol acylase which catalyzes an essential step in the glycosylphosphatidylinositol (GPI)-anchor biosynthesis pathway. Inhibition of Gwt1 prevents localization of cell wall mannoproteins, which compromises cell wall integrity, biofilm formation, germ tube formation, and fungal growth.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H21N4O6P
Molecular Weight
468.3991
Exact Mass
468.119
Elemental Analysis
C, 56.41; H, 4.52; N, 11.96; O, 20.49; P, 6.61
CAS #
2091769-17-2
Related CAS #
Manogepix;936339-60-5
PubChem CID
44123754
Appearance
White to yellow solid powder
LogP
1.6
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
9
Rotatable Bond Count
9
Heavy Atom Count
33
Complexity
644
Defined Atom Stereocenter Count
0
SMILES
P(=O)([O-])(O[H])OC([H])([H])[N+]1=C([H])C([H])=C([H])C(=C1N([H])[H])C1=C([H])C(C([H])([H])C2C([H])=C([H])C(C([H])([H])OC3=C([H])C([H])=C([H])C([H])=N3)=C([H])C=2[H])=NO1
InChi Key
JQONJQKKVAHONF-UHFFFAOYSA-N
InChi Code
InChI=1S/C22H21N4O6P/c23-22-19(4-3-11-26(22)15-31-33(27,28)29)20-13-18(25-32-20)12-16-6-8-17(9-7-16)14-30-21-5-1-2-10-24-21/h1-11,13,23H,12,14-15H2,(H2,27,28,29)
Chemical Name
[2-amino-3-[3-[[4-(pyridin-2-yloxymethyl)phenyl]methyl]-1,2-oxazol-5-yl]pyridin-1-ium-1-yl]methyl hydrogen phosphate
Synonyms
Fosmanogepix; 2091769-17-2; APX001; Fosmanogepix [INN]; Fosmanogepix [USAN]; APX-001; 1XQ871489P; E1211;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~5 mg/mL (~10.67 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.34 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (5.34 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1349 mL 10.6746 mL 21.3493 mL
5 mM 0.4270 mL 2.1349 mL 4.2699 mL
10 mM 0.2135 mL 1.0675 mL 2.1349 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
A Clinical Trial of the Study Medicine (Called Fosmanogepix) in Participants With Varying Degrees of Hepatic Function.
CTID: NCT05582187
Phase: Phase 1
Status: Recruiting
Date: 2024-08-15
A Phase 3 Efficacy and Safety Study of Fosmanogepix for the Treatment of Adult Participants With Candidemia and/or Invasive Candidiasis.
CTID: NCT05421858
Phase: Phase 3
Status: Not yet recruiting
Date: 2024-07-23
A Bioequivalence Study of APX001 High-load and Low-load Tablets
CTID: NCT05491733
Phase: Phase 1
Status: Completed
Date: 2024-07-11
Open-label Study of APX001 for Treatment of Patients With Invasive Mold Infections Caused by Aspergillus or Rare Molds
CTID: NCT04240886
Phase: Phase 2
Status: Terminated
Date: 2024-06-03
An Efficacy and Safety Study of APX001 in Non-Neutropenic Patients With Candidemia
CTID: NCT03604705
Phase: Phase 2
Status: Completed
Date: 2024-06-03
Contact Us