yingweiwo

Liproxstatin-1 hydrochloride

Alias: Liproxstatin-1 (hydrochloride); 2250025-95-5; Liproxstatin-1 hydrochloride; HY-12726A; AKOS034834095; CS-0120787; Liproxstatin-1 HCl (950455-15-9 free base); N-(3-Chlorobenzyl)-1'H-spiro[piperidine-4,2'-quinoxalin]-3'-amine hydrochloride;
Cat No.:V51856 Purity: ≥98%
Liproxstatin-1 HCl is a potent ferroptosis inhibitor that can suppress ferroptotic cell death (IC50=22 nM).
Liproxstatin-1 hydrochloride
Liproxstatin-1 hydrochloride Chemical Structure CAS No.: 2250025-95-5
Product category: Apoptosis
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Liproxstatin-1 hydrochloride:

  • Liproxstatin-1
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Liproxstatin-1 HCl is a potent ferroptosis inhibitor that can suppress ferroptotic cell death (IC50=22 nM).
Biological Activity I Assay Protocols (From Reference)
Targets
Ferroptosis (IC50 = 22 nM)
ln Vitro
In mouse embryonic fibroblasts, lipostatin-1 has anti-ferroptosis action with an IC50 of about 38 nM[2].Fer-1 and Lip-1 Are Inherently Good, but Not Great, Radical-Trapping Antioxidants; Fer-1 and Lip-1 Are Excellent Radical-Trapping Antioxidants in Phospholipid Bilayers; Fer-1 and Lip-1 Are Poor Inhibitors of 15-LOX-1 at Best, As Is α-TOH. [2]
Supporting the involvement of ferroptosis, treatment with Liproxstatin-1 was able to protect HRPTEpiCs from RSL3-induced cell death (Fig. 7a). Similar findings were obtained in the immortalized human renal proximal tubule epithelial cell line, HK-2 (Supplementary Fig. 7b). Next, we knocked down Gpx4 in HK-2 cells using a pool of siRNAs, revealing a small yet significant decrease in cell viability sensitive to αToc treatment (Supplementary Fig. 7c). Inducing cell death through Gpx4 knockdown, however, turned out to be challenging for the high expression levels of Gpx4 in kidney tubular epithelial cells (Supplementary Fig. 7d). Nonetheless, the Gpx4 knockdown rendered cells more sensitive to ferroptosis-inducing agents (Supplementary Fig. 7e), indicating a Gpx4-regulated ferroptotic machinery in human proximal tubular epithelial cells. Moreover, RSL3-induced BODIPY 581/591 C11 oxidation could be blocked by Liproxstatin-1 (Fig. 7b), demonstrating that Liproxstatin-1 prevents ferroptotic cell death also in humans.[1]
ln Vivo
In human cells, Gpx4/kidney, and ischemia/reperfusion-induced tissue injury models, liprostatin-1 (10 mg/kg, i.p.) reduces ferroptosis [1].
Next, researchers assessed the in vivo potential of liprostatin-1 to prevent the consequences of inducible Gpx4 disruption in animals. On TAM treatment of CreERT2;Gpx4fl/fl mice, mice were injected daily with liprostatin-1 intraperitoneally (i.p.) until the mice showed signs of acute renal failure (ARF), at which point they were euthanized (Fig. 7c). Notably, Liproxstatin-1 remarkably extended survival compared with the vehicle-treated group. TUNEL staining at day 9 after TAM treatment showed a strongly reduced number of TUNEL+ cells in Liproxstatin-1 compared with the vehicle-treated group (Fig. 7d), suggesting that Liproxstatin-1 delays ferroptosis in tubular cells. The discrepancy between death of mice due to ARF in Fig. 1c and vehicle-treated animals in Fig. 7c is explained by the mode of TAM administration, feeding versus i.p. injection. As an independent proof-of-concept, we analysed the in vivo efficacy of Liproxstatin-1 in a bona fide model of hepatic ischaemia/reperfusion injury, providing evidence that liprostatin-1 mitigated tissue injury in ischaemia/reperfusion-induced liver injury (Fig. 7e). Hence, these data implicate ferroptosis as a contributor in ischaemia/reperfusion-induced tissue injury and hold great promise for the development of therapeutics to treat related pathologies.[1]
Enzyme Assay
Inhibited Autoxidation of Styrene[2]
These experiments were carried out in a manner similar to that described in our previous work.36 In brief, styrene was washed thrice with 1 M aqueous NaOH, dried over MgSO4, filtered, distilled under vacuum, and purified by percolating through silica, then basic alumina. To a cuvette of 1.25 mL of styrene was added 1.18 mL of chlorobenzene, and the solution equilibrated for 5 min at 37 °C. The cuvette was blanked, 12.5 μL of 2 mM PBD-BODIPY in 1,2,4-trichlorobenzene was added followed by 50 μL of 0.3 M AIBN in chlorobenzene, and the solution was thoroughly mixed. After 20 min, an aliquot of liprostatin-1, Fer-1, C15-THN, PMHC, or α-TOH stock solution (1 mM) in chlorobenzene was added and the loss of absorbance at 591 nm followed. The inhibition rate constant (kinh) and stoichiometry (n) were determined for each experiment according to Figure 1B (see the Supporting Information for complete details). Autoxidations were carried out with three technical replicates at each concentration, and kinetics are reported as the mean ± standard deviation.
Inhibited Autoxidation of PC Liposomes[2]
To a cuvette of 2.34 mL of 10 mM PBS at pH 7.4 were added liposomes (125 μL of 20 mM stock in PBS at pH 7.4),32 and the solution was equilibrated for 5 min at 37 °C. The cuvette was blanked, 10 μL of 2 mM STY-BODIPY in DMSO was added followed by 10 μL of 0.05 M MeOAMVN in acetonitrile, and the solution was thoroughly mixed. After 5 min, an aliquot of liprostatin-1, Fer-1, C15-THN, PMHC, or α-TOH stock solution (1 mM) in DMSO was added and the loss of absorbance at 565 nm followed. The inhibition rate constant (kinh) and stoichiometry (n) were determined for each experiment according to Figure 3B (see the Supporting (see the Supporting Information for complete details). Autoxidations were carried out with three technical replicates at each concentration, and kinetics are reported as the mean ± standard deviation. Indistinguishable results were obtained in select control experiments where the antioxidant was added prior to liposome extrusion.
Cell Assay
Phenotypic screening for ferroptosis inhibitors[1]
In brief, compound seeding onto 96-well plates (1,000 cells per well) was carried out simultaneously with 1 μM TAM administration (leading to Gpx4 inactivation) obviating multiple medium changes, followed by incubation for 72 h. Cell viability was assessed subsequently using the live/dead assay dye AquaBluer. In the primary screening round, all compounds were tested at a single concentration of 10 μM and positive hits were selected from wells with >80% cell viability. To confirm primary hits, compounds were re-screened in the same assay and dose-dependent survival as well as toxicity curves were obtained using concentrations of 0–100 μM. IC50 and TC50 values were calculated using the GraphPad Prism software. Validated hits were then evaluated based on efficacy, selectivity for ferroptosis, therapeutic range and physicochemical properties. In addition, an in silico ADME-Tox screening was implemented to exclude compounds with potential in vivo side effects. To further validate liprostatin-1, SAR studies were performed using commercially available derivatives.
Animal Protocol
Animals included in the treatment study of inducible Gpx4−/− mice were equally distributed between sex and weight, with typically 8–10 weeks of age. The average weight within the groups was between 22 and 24 g. Groups were formed to have comparable numbers of females/males of the same age. Animal weight was arranged to have a similar distribution between females and males. For the pharmacological inhibitor experiments, CreERT2;Gpx4fl/fl mice were injected on day 1 and 3 with 0.5 mg TAM dissolved in Miglyol. On day 4, compound treatment was started (liprostatin-1: 10 mg kg−1) along with vehicle control (1% dimethylsulphoxide (DMSO) in PBS). Liproxstatin-1 and vehicle control were administered once daily by i.p. injection. Survival analysis was performed using the GraphPad Prism software and statistical analysis was done according to the log-rank (Mantel–Cox) test. The compounds, vehicle and liprostatin-1, were both odourless and colourless ensuring no detectable bias. Injections and daily animal assessment were performed in a blinded fashion. When animals showed terminal signs, they were euthanized. No statistical method was used to predetermine sample size for the treatment of the Gpx4−/− mice. Mice were kept under standard conditions with food and water ad libitum (ssniff). All experiments were performed in compliance with the German Animal Welfare Law and have been approved by the institutional committee on animal experimentation and the government of Upper Bavaria.[1]
Dissolved in % DMSO in PBS; 10 mg/kg; i.p. injection
GreERT2; Gpx4fI/fI mice
References

[1]. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014 Dec;16(12):1180-91.

[2]. On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death. ACS Cent Sci. 2017 Mar 22;3(3):232-243.

Additional Infomation
Ferroptosis is a non-apoptotic form of cell death induced by small molecules in specific tumour types, and in engineered cells overexpressing oncogenic RAS. Yet, its relevance in non-transformed cells and tissues is unexplored and remains enigmatic. Here, we provide direct genetic evidence that the knockout of glutathione peroxidase 4 (Gpx4) causes cell death in a pathologically relevant form of ferroptosis. Using inducible Gpx4(-/-) mice, we elucidate an essential role for the glutathione/Gpx4 axis in preventing lipid-oxidation-induced acute renal failure and associated death. We furthermore systematically evaluated a library of small molecules for possible ferroptosis inhibitors, leading to the discovery of a potent spiroquinoxalinamine derivative called Liproxstatin-1, which is able to suppress ferroptosis in cells, in Gpx4(-/-) mice, and in a pre-clinical model of ischaemia/reperfusion-induced hepatic damage. In sum, we demonstrate that ferroptosis is a pervasive and dynamic form of cell death, which, when impeded, promises substantial cytoprotection.[1]
Ferroptosis is a form of regulated necrosis associated with the iron-dependent accumulation of lipid hydroperoxides that may play a key role in the pathogenesis of degenerative diseases in which lipid peroxidation has been implicated. High-throughput screening efforts have identified ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) as potent inhibitors of ferroptosis - an activity that has been ascribed to their ability to slow the accumulation of lipid hydroperoxides. Herein we demonstrate that this activity likely derives from their reactivity as radical-trapping antioxidants (RTAs) rather than their potency as inhibitors of lipoxygenases. Although inhibited autoxidations of styrene revealed that Fer-1 and Lip-1 react roughly 10-fold more slowly with peroxyl radicals than reactions of α-tocopherol (α-TOH), they were significantly more reactive than α-TOH in phosphatidylcholine lipid bilayers - consistent with the greater potency of Fer-1 and Lip-1 relative to α-TOH as inhibitors of ferroptosis. None of Fer-1, Lip-1, and α-TOH inhibited human 15-lipoxygenase-1 (15-LOX-1) overexpressed in HEK-293 cells when assayed at concentrations where they inhibited ferroptosis. These results stand in stark contrast to those obtained with a known 15-LOX-1 inhibitor (PD146176), which was able to inhibit the enzyme at concentrations where it was effective in inhibiting ferroptosis. Given the likelihood that Fer-1 and Lip-1 subvert ferroptosis by inhibiting lipid peroxidation as RTAs, we evaluated the antiferroptotic potential of 1,8-tetrahydronaphthyridinols (hereafter THNs): rationally designed radical-trapping antioxidants of unparalleled reactivity. We show for the first time that the inherent reactivity of the THNs translates to cell culture, where lipophilic THNs were similarly effective to Fer-1 and Lip-1 at subverting ferroptosis induced by either pharmacological or genetic inhibition of the hydroperoxide-detoxifying enzyme Gpx4 in mouse fibroblasts, and glutamate-induced death of mouse hippocampal cells. These results demonstrate that potent RTAs subvert ferroptosis and suggest that lipid peroxidation (autoxidation) may play a central role in the process.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C19H22CL2N4
Molecular Weight
377.310781955719
Exact Mass
376.122
CAS #
2250025-95-5
Related CAS #
Liproxstatin-1;950455-15-9;Liproxstatin-1-13C6;Liproxstatin-1-15N
PubChem CID
136590563
Appearance
Typically exists as solid at room temperature
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
2
Heavy Atom Count
25
Complexity
460
Defined Atom Stereocenter Count
0
InChi Key
HEHOHTKMIOBTKC-UHFFFAOYSA-N
InChi Code
InChI=1S/C19H21ClN4.ClH/c20-15-5-3-4-14(12-15)13-22-18-19(8-10-21-11-9-19)24-17-7-2-1-6-16(17)23-18;/h1-7,12,21,24H,8-11,13H2,(H,22,23);1H
Chemical Name
N-[(3-chlorophenyl)methyl]spiro[1,4-dihydroquinoxaline-3,4'-piperidine]-2-imine;hydrochloride
Synonyms
Liproxstatin-1 (hydrochloride); 2250025-95-5; Liproxstatin-1 hydrochloride; HY-12726A; AKOS034834095; CS-0120787; Liproxstatin-1 HCl (950455-15-9 free base); N-(3-Chlorobenzyl)-1'H-spiro[piperidine-4,2'-quinoxalin]-3'-amine hydrochloride;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6503 mL 13.2517 mL 26.5034 mL
5 mM 0.5301 mL 2.6503 mL 5.3007 mL
10 mM 0.2650 mL 1.3252 mL 2.6503 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us