yingweiwo

ONX 0801 trisodium (BGC 945 trisodium; Idetrexed trisodium; CB 300945 trisodium)

Cat No.:V41061 Purity: ≥98%
ONX 0801 (BGC 945) trisodium is an inhibitor (blocker/antagonist) of thymus kinase synthase (TS) that targets tumors overexpressing alpha folate receptors.
ONX 0801 trisodium (BGC 945 trisodium; Idetrexed trisodium; CB 300945 trisodium)
ONX 0801 trisodium (BGC 945 trisodium; Idetrexed trisodium; CB 300945 trisodium) Chemical Structure CAS No.: 1097638-00-0
Product category: Apoptosis
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of ONX 0801 trisodium (BGC 945 trisodium; Idetrexed trisodium; CB 300945 trisodium):

  • BGC-945
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
ONX 0801 (BGC 945) trisodium is an inhibitor (blocker/antagonist) of thymus kinase synthase (TS) that targets tumors overexpressing alpha folate receptors.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
ONX 0801 (BGC 945) is intended to more successfully target cancer cells that overexpress the α-FR, therefore reducing toxicity even further[1]. A431, A431-FBP, KB, IGROV-1, and JEG-3 cells have IC50 values of 6.6 μM, 1.1 nM, 3.3 nM, 90 nM, and 0.32 μM for ONX 0801 (BGC 945)[2].
ln Vivo
In comparison to other tissues, BGC 945 (100 mg/kg, intraperitoneal/IV injection) in the tumor had a longer half-life (28 hours)[2]. BGC 945, administered at a dose of 100 mg/kg per day for 16 days, does not cause weight loss, renal dysfunction, or macroscopic indications of toxicity to the main organs[2]. In line with tumor targeting, BGC 945 at 100 mg/kg causes a 5–20-fold increase in tumor dUrd at 4-72 hours without increasing plasma levels[2].
Animal Protocol
Animal/Disease Models: Mice (on the folate-free diet for 5 days were transplanted with tumor and the implants)[2] .
Doses: 100 mg/kg (pharmacokinetic/PK Analysis).
Route of Administration: Single ip or iv injection.
Experimental Results: After ip injection, the compound was well absorbed from the peritoneal cavity. The plasma AUC was 50% higher for ip compared with iv administration and was also higher in spleen, kidney, and liver by this route. Tumor AUC was similar via either route.
References

[1]. Development and binding mode assessment of N-[4-[2-propyn-1-yl[(6S)-4,6,7,8-tetrahydro-2-(hydroxymethyl)-4-oxo-3H-cyclopenta[g]quinazolin-6-yl]amino]benzoyl]-l-γ-glutamyl-D-glutamic acid (BGC 945), a novel thymidylate synthase inhibitor that targets tumor cells. J Med Chem. 2013 Jul 11;56(13):5446-55.

[2]. BGC 945, a novel tumor-selective thymidylate synthase inhibitor targeted to alpha-folate receptor-overexpressing tumors. Cancer Res. 2005 Dec 15;65(24):11721-8.

[3]. Efficacy and tolerability of the thymidylate synthase (TS) inhibitor, BGC 945 is mediated through its selective uptake via the α-folate receptor (α-FR) in IGROV-1 human tumor xenografts. AACR Annual Meeting-- Apr 12-16, 2008; San Diego, CA.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C32H30N5NA3O10
Molecular Weight
713.5774
Exact Mass
713.168
CAS #
1097638-00-0
Related CAS #
Idetrexed;501332-69-0
PubChem CID
136242346
Appearance
Typically exists as solid at room temperature
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
12
Rotatable Bond Count
12
Heavy Atom Count
50
Complexity
1290
Defined Atom Stereocenter Count
3
SMILES
C#CCN([C@H]1CCC2=CC3=C(C=C12)C(=O)NC(=N3)CO)C4=CC=C(C=C4)C(=O)N[C@@H](CCC(=O)N[C@H](CCC(=O)[O-])C(=O)[O-])C(=O)[O-].[Na+].[Na+].[Na+]
InChi Key
JMUBAMVCKZFETQ-GVNLSHJKSA-K
InChi Code
InChI=1S/C32H33N5O10.3Na/c1-2-13-37(25-10-5-18-14-24-21(15-20(18)25)30(43)36-26(16-38)33-24)19-6-3-17(4-7-19)29(42)35-23(32(46)47)8-11-27(39)34-22(31(44)45)9-12-28(40)41;;;/h1,3-4,6-7,14-15,22-23,25,38H,5,8-13,16H2,(H,34,39)(H,35,42)(H,40,41)(H,44,45)(H,46,47)(H,33,36,43);;;/q;3*+1/p-3/t22-,23+,25+;;;/m1.../s1
Chemical Name
trisodium;(2R)-2-[[(4S)-4-carboxylato-4-[[4-[[(6S)-2-(hydroxymethyl)-4-oxo-3,6,7,8-tetrahydrocyclopenta[g]quinazolin-6-yl]-prop-2-ynylamino]benzoyl]amino]butanoyl]amino]pentanedioate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.4014 mL 7.0069 mL 14.0138 mL
5 mM 0.2803 mL 1.4014 mL 2.8028 mL
10 mM 0.1401 mL 0.7007 mL 1.4014 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us