Size | Price | Stock | Qty |
---|---|---|---|
500mg |
|
||
1g |
|
||
5g |
|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Potassium bicarbonate intake is done mainly in the small intestine in which approximately 90% of the potassium will be absorbed by passive diffusion. Approximately 90% of the exogenous potassium consumed is lost in the urine while the other 10% is excreted in feces and a very small amount can be found in the sweat. The excreted potassium is freely filtered by the glomerulus of the kidney. Biological Half-Life Some reports have shown that after absorption, most body potassium exchanges rapidly with a half-life of less than 7 hours. |
---|---|
References | |
Additional Infomation |
Potassium hydrogencarbonate is a potassium salt that is the monopotassium salt of carbonic acid. It has fungicidal properties and is used in organic farming for the control of powdery mildew and apple scab. It has a role as a food acidity regulator, a raising agent, a buffer and an antifungal agrochemical. It is a potassium salt and an organic salt. It contains a hydrogencarbonate.
Potassium bicarbonate is a white, crystalline, slightly alkaline and salty substance. It is produced by the passage of carbon dioxide through an aqueous potassium carbonate solution. It is used in medicine as an antacid. It is registered in the FDA under the section of suitable, safe and effective ingredients for OTC antacids. This FDA denomination classifies potassium bicarbonate as a GRAS ingredient. See also: Potassium Cation (has active moiety); Bicarbonate Ion (has active moiety) ... View More ... Drug Indication Potassium bicarbonate is used as an antacid, electrolyte replenisher and potassium supplement. It can also be used as an excipient in drug formulations. An antacid is a medication used to neutralize gastric acid in a short timeframe after ingestion and the effect is soon overcome by meal-stimulated acid secretion. Mechanism of Action The antacid potential of potassium bicarbonate is attained by increasing the gastrointestinal pH by neutralizing hydrochloric acid. The increase in pH results in suppression of the action of pepsin which is the enzyme that exacerbates ulceration due to the presence of acid. |
Molecular Formula |
CHKO3
|
---|---|
Molecular Weight |
100.1151
|
Exact Mass |
99.956
|
CAS # |
298-14-6
|
PubChem CID |
516893
|
Appearance |
Typically exists as solid at room temperature
|
Density |
2,17 g/cm3
|
Boiling Point |
333.6ºC at 760mmHg
|
Melting Point |
292 °C
|
Flash Point |
NotºConsidered to be a fire hazard
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
3
|
Rotatable Bond Count |
0
|
Heavy Atom Count |
5
|
Complexity |
33.9
|
Defined Atom Stereocenter Count |
0
|
SMILES |
[K+].[O-]C(=O)O[H]
|
InChi Key |
TYJJADVDDVDEDZ-UHFFFAOYSA-M
|
InChi Code |
InChI=1S/CH2O3.K/c2-1(3)4;/h(H2,2,3,4);/q;+1/p-1
|
Chemical Name |
potassium;hydrogen carbonate
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 9.9880 mL | 49.9401 mL | 99.8801 mL | |
5 mM | 1.9976 mL | 9.9880 mL | 19.9760 mL | |
10 mM | 0.9988 mL | 4.9940 mL | 9.9880 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.