Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
ln Vitro |
Drug compounds have included stable heavy isotopes of carbon, hydrogen, and other elements, mostly as quantitative tracers while the drugs were being developed. Because deuteration may have an effect on a drug's pharmacokinetics and metabolic properties, it is a cause for concern [1].
|
---|---|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Is completely absorbed from the gastrointestinal tract; however, extensive first-pass metabolism through the portal circulation results in a low systemic availability of 15%. Bioavailability is unaffected by food. Although higher concentrations of the metabolites are present in the plasma due to decreased urinary excretion, these are inactive. Animal studies have demonstrated that felodipine crosses the blood-brain barrier and the placenta. 10 L/kg 0.8 L/min [Young healthy subjects] Metabolism / Metabolites Hepatic metabolism primarily via cytochrome P450 3A4. Six metabolites with no appreciable vasodilatory effects have been identified. Biological Half-Life 17.5-31.5 hours in hypertensive patients; 19.1-35.9 hours in elderly hypertensive patients; 8.5-19.7 in healthy volunteers. |
Toxicity/Toxicokinetics |
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation Because no information is available on the use of felodipine during breastfeeding, an alternate drug may be preferred. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Protein Binding 99%, primarily to the albumin fraction. |
References |
|
Additional Infomation |
Felodipine is the mixed (methyl, ethyl) diester of 4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylic acid. A calcium-channel blocker, it lowers blood pressure by reducing peripheral vascular resistance through a highly selective action on smooth muscle in arteriolar resistance vessels. It is used in the management of hypertension and angina pectoris. It has a role as a calcium channel blocker, an antihypertensive agent, a vasodilator agent and an anti-arrhythmia drug. It is a dihydropyridine, a dichlorobenzene, an ethyl ester and a methyl ester.
Felodipine is a long-acting 1,4-dihydropyridine calcium channel blocker (CCB)b. It acts primarily on vascular smooth muscle cells by stabilizing voltage-gated L-type calcium channels in their inactive conformation. By inhibiting the influx of calcium in smooth muscle cells, felodipine prevents calcium-dependent myocyte contraction and vasoconstriction. Felodipine is the most potent CCB in use and is unique in that it exhibits fluorescent activity. In addition to binding to L-type calcium channels, felodipine binds to a number of calcium-binding proteins, exhibits competitive antagonism of the mineralcorticoid receptor, inhibits the activity of calmodulin-dependent cyclic nucleotide phosphodiesterase, and blocks calcium influx through voltage-gated T-type calcium channels. Felodipine is used to treat mild to moderate essential hypertension. Felodipine is a Dihydropyridine Calcium Channel Blocker. The mechanism of action of felodipine is as a Calcium Channel Antagonist. Felodipine is a second generation calcium channel blocker and commonly used antihypertensive agent. Felodipine therapy has been associated with a low rate of serum enzyme elevations, but has not been convincingly linked to instances of clinically apparent, acute liver injury. Felodipine is a dihydropyridine calcium channel blocking agent. Felodipine inhibits the influx of extracellular calcium ions into myocardial and vascular smooth muscle cells, causing dilatation of the main coronary and systemic arteries and decreasing myocardial contractility. This agent also inhibits the drug efflux pump P-glycoprotein which is overexpressed in some multi-drug resistant tumors and may improve the efficacy of some antineoplastic agents. (NCI04) A dihydropyridine calcium antagonist with positive inotropic effects. It lowers blood pressure by reducing peripheral vascular resistance through a highly selective action on smooth muscle in arteriolar resistance vessels. See also: Enalapril maleate; felodipine (component of). Drug Indication For the treatment of mild to moderate essential hypertension. FDA Label Mechanism of Action Felodipine decreases arterial smooth muscle contractility and subsequent vasoconstriction by inhibiting the influx of calcium ions through voltage-gated L-type calcium channels. It reversibly competes against nitrendipine and other DHP CCBs for DHP binding sites in vascular smooth muscle and cultured rabbit atrial cells. Calcium ions entering the cell through these channels bind to calmodulin. Calcium-bound calmodulin then binds to and activates myosin light chain kinase (MLCK). Activated MLCK catalyzes the phosphorylation of the regulatory light chain subunit of myosin, a key step in muscle contraction. Signal amplification is achieved by calcium-induced calcium release from the sarcoplasmic reticulum through ryanodine receptors. Inhibition of the initial influx of calcium decreases the contractile activity of arterial smooth muscle cells and results in vasodilation. The vasodilatory effects of felodipine result in an overall decrease in blood pressure. Felodipine may be used to treat mild to moderate essential hypertension. Pharmacodynamics Felodipine belongs to the dihydropyridine (DHP) class of calcium channel blockers (CCBs), the most widely used class of CCBs. There are at least five different types of calcium channels in Homo sapiens: L-, N-, P/Q-, R- and T-type. It was widely accepted that CCBs target L-type calcium channels, the major channel in muscle cells that mediates contraction; however, some studies have shown that felodipine also binds to and inhibits T-type calcium channels. T-type calcium channels are most commonly found on neurons, cells with pacemaker activity and on osteocytes. The pharmacologic significance of T-type calcium channel blockade is unknown. Felodipine also binds to calmodulin and inhibits calmodulin-dependent calcium release from the sarcoplasmic reticulum. The effect of this interaction appears to be minor. Another study demonstrated that felodipine attenuates the activity of calmodulin-dependent cyclic nucleotide phosphodiesterase (CaMPDE) by binding to the PDE-1B1 and PDE-1A2 enzyme subunits. CaMPDE is one of the key enzymes involved in cyclic nucleotides and calcium second messenger systems. Felodipine also acts as an antagonist to the mineralcorticoid receptor by competing with aldosterone for binding and blocking aldosterone-induced coactivator recruitment of the mineralcorticoid receptor. Felodipine is able to bind to skeletal and cardiac muscle isoforms of troponin C, one of the key regulatory proteins in muscle contraction. Though felodipine exhibits binding to many endogenous molecules, its vasodilatory effects are still thought to be brought about primarily through inhibition of voltage-gated L-type calcium channels. Similar to other DHP CCBs, felodipine binds directly to inactive calcium channels stabilizing their inactive conformation. Since arterial smooth muscle depolarizations are longer in duration than cardiac muscle depolarizations, inactive channels are more prevalent in smooth muscle cells. Alternative splicing of the alpha-1 subunit of the channel gives felodipine additional arterial selectivity. At therapeutic sub-toxic concentrations, felodipine has little effect on cardiac myocytes and conduction cells. |
Molecular Formula |
C18H14D5CL2NO4
|
---|---|
Molecular Weight |
389.28
|
Exact Mass |
388.1
|
CAS # |
1217744-87-0
|
PubChem CID |
3333
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.3±0.1 g/cm3
|
Boiling Point |
471.5±45.0 °C at 760 mmHg
|
Flash Point |
239.0±28.7 °C
|
Vapour Pressure |
0.0±1.2 mmHg at 25°C
|
Index of Refraction |
1.550
|
LogP |
4.83
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
5
|
Rotatable Bond Count |
6
|
Heavy Atom Count |
25
|
Complexity |
614
|
Defined Atom Stereocenter Count |
0
|
SMILES |
ClC1C(=CC=CC=1[C@@H]1C(C(=O)OC)=C(C)NC(C)=C1C(=O)OC([2H])([2H])C([2H])([2H])[2H])Cl
|
InChi Key |
RZTAMFZIAATZDJ-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C18H19Cl2NO4/c1-5-25-18(23)14-10(3)21-9(2)13(17(22)24-4)15(14)11-7-6-8-12(19)16(11)20/h6-8,15,21H,5H2,1-4H3
|
Chemical Name |
5-O-ethyl 3-O-methyl 4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.5688 mL | 12.8442 mL | 25.6885 mL | |
5 mM | 0.5138 mL | 2.5688 mL | 5.1377 mL | |
10 mM | 0.2569 mL | 1.2844 mL | 2.5688 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.