yingweiwo

Undecane

Cat No.:V55018 Purity: ≥98%
Undecane has anti-allergic and anti-inflammatory activity against sensitized rat basophilic leukemia (RBL-2H3) mast cells and HaCaT keratinocytes.
Undecane
Undecane Chemical Structure CAS No.: 1120-21-4
Product category: Apoptosis
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Undecane:

  • Undecane-d24
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Undecane has anti-allergic and anti-inflammatory activity against sensitized rat basophilic leukemia (RBL-2H3) mast cells and HaCaT keratinocytes. In sensitized mast cells, inhibits degranulation and secretion of histamine and TNF-α.
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Absorption of undecane occurs mainly by inhalation.
... Pigs were exposed to JP-8 jet fuel-soaked cotton fabrics for 1 and 4 d with repeated daily exposures. Preexposed and unexposed skin was then dermatomed and placed in flow-through in vitro diffusion cells. Five cells with exposed skin and four cells with unexposed skin were dosed with a mixture of 14 different hydrocarbons (HC) consisting of nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, ethyl benzene, o-xylene, trimethyl benzene (TMB), cyclohexyl benzene (CHB), naphthalene, and dimethyl naphthalene (DMN) in water + ethanol (50:50) as diluent. Another five cells containing only JP-8-exposed skin were dosed solely with diluent in order to determine the skin retention of jet fuel HC. The absorption parameters of flux, diffusivity, and permeability were calculated for the studied HC. The data indicated that there was a two-fold and four-fold increase in absorption of specific aromatic HC like ethyl benzene, o-xylene, and TMB through 1- and 4-d JP-8 preexposed skin, respectively. Similarly, dodecane and tridecane were absorbed more in 4-d than 1-d JP-8 preexposed skin experiments. The absorption of naphthalene and DMN was 1.5 times greater than the controls in both 1- and 4-d preexposures. CHB, naphthalene, and DMN had significant persistent skin retention in 4-d preexposures as compared to 1-d exposures that might leave skin capable of further absorption several days postexposure. The possible mechanism of an increase in HC absorption in fuel preexposed skin may be via lipid extraction from the stratum corneum as indicated by Fourier transform infrared (FTIR) spectroscopy. This study suggests that the preexposure of skin to jet fuel enhances the subsequent in vitro percutaneous absorption of HC, so single-dose absorption data for jet fuel HC from naive skin may not be optimal to predict the toxic potential for repeated exposures. For certain compounds, persistent absorption may occur days after the initial exposure.
Dermal penetration and absorption of jet fuels in general, and JP-8 in particular, is not well understood, even though government and industry, worldwide, use over 4.5 billion gallons of JP-8 per year. Exposures to JP-8 can occur from vapor, liquid, or aerosol. Inhalation and dermal exposure are the most prevalent routes. JP-8 may cause irritation during repeated or prolonged exposures, but it is unknown whether systemic toxicity can occur from dermal penetration of fuels. The purpose of this investigation was to measure the penetration and absorption of JP-8 and its major constituents with rat skin, so that the potential for effects with human exposures can be assessed. We used static diffusion cells to measure both the flux of JP-8 and components across the skin and the kinetics of absorption into the skin. Total flux of the hydrocarbon components was 20.3 micrograms/sq cm/hr. Thirteen individual components of JP-8 penetrated into the receptor solution. The fluxes ranged from a high of 51.5 micrograms/sq cm/hr (an additive, diethylene glycol monomethyl ether) to a low of 0.334 micrograms/sq cm/hr (tridecane). Aromatic components penetrated most rapidly. Six components (all aliphatic) were identified in the skin. Concentrations absorbed into the skin at 3.5 hr ranged from 0.055 micrograms per gram skin (tetradecane) to 0.266 micrograms per gram skin (undecane). These results suggest: (1) that JP-8 penetration will not cause systemic toxicity because of low fluxes of all the components; and (2) the absorption of aliphatic components into the skin may be a cause of skin irritation.
Rat tissue:air and blood:air partition coefficients (PCs) for octane, nonane, decane, undecane, and dodecane (n-C8 to n-C12 n-alkanes) were determined by vial equilibration. The blood:air PC values for n-C8 to n-C12 were 3.1, 5.8, 8.1, 20.4, and 24.6, respectively. The lipid solubility of n-alkanes increases with carbon length, suggesting that lipid solubility is an important determinant in describing n-alkane blood:air PC values. The muscle:blood, liver: blood, brain:blood, and fat:blood PC values were octane (1.0, 1.9, 1.4, and 247), nonane (0.8, 1.9, 3.8, and 274), decane (0.9, 2.0, 4.8, and 328), undecane (0.7, 1.5, 1.7, and 529), and dodecane (1.2, 1.9, 19.8, and 671), respectively. The tissue:blood PC values were greatest in fat and the least in muscle. The brain:air PC value for undecane was inconsistent with other n-alkane values. Using the measured partition coefficient values of these n-alkanes, linear regression was used to predict tissue (except brain) and blood:air partition coefficient values for larger n-alkanes, tridecane, tetradecane, pentadecane, hexadecane, and heptadecane (n-C13 to n-C17). Good agreement between measured and predicted tissue:air and blood:air partition coefficient values for n-C8 to n-Cl2 offer confidence in the partition coefficient predictions for longer chain n-alkanes.
For more Absorption, Distribution and Excretion (Complete) data for n-Undecane (6 total), please visit the HSDB record page.
Metabolism / Metabolites
Alternative fuels are being considered for civilian and military uses. One of these is S-8, a replacement jet fuel synthesized using the Fischer-Tropsch process, which contains no aromatic compounds and is mainly composed of straight and branched alkanes. Metabolites of S-8 fuel in laboratory animals have not been identified. The goal of this study was to identify metabolic products from exposure to aerosolized S-8 and a designed straight-chain alkane/polyaromatic mixture (decane, undecane, dodecane, tridecane, tetradecane, pentadecane, naphthalene, and 2-methylnaphthalene) in male Fischer 344 rats. Collected blood and tissue samples were analyzed for 70 straight and branched alcohols and ketones ranging from 7 to 15 carbons. No fuel metabolites were observed in the blood, lungs, brain, and fat following S-8 exposure. Metabolites were detected in the liver, urine, and feces. Most of the metabolites were 2- and 3-position alcohols and ketones of prominent hydrocarbons with very few 1- or 4-position metabolites. Following exposure to the alkane mixture, metabolites were observed in the blood, liver, and lungs. Interestingly, heavy metabolites (3-tridecanone, 2-tridecanol, and 2-tetradecanol) were observed only in the lung tissues possibly indicating that metabolism occurred in the lungs. With the exception of these heavy metabolites, the metabolic profiles observed in this study are consistent with previous studies reporting on the metabolism of individual alkanes. Further work is needed to determine the potential metabolic interactions of parent, primary, and secondary metabolites and identify more polar metabolites. Some metabolites may have potential use as biomarkers of exposure to fuels.
Metabolism of undecane is likely to occur by hydroxylation to yield the corresponding alcohol.
Toxicity/Toxicokinetics
Toxicity Summary
IDENTIFICATION AND USE: Undecane is a colorless liquid. It is used in petroleum research, organic synthesis, and as distillation chaser. It is also a component of gasoline. HUMAN EXPOSURE AND TOXICITY: In tests with human subjects, solutions as strong as 30% produced no irritation when applied to skin and left for 24 hr. Exposure to undecane during industrial use causes eye and skin irritation. It is irritating to mucous membranes and the upper respiratory tract. ANIMAL STUDIES: In skin irritation tests in which these substances were applied to the skin of rabbits tetradecane was observed to have the strongest effect, followed by heptadecane, dodecane, and undecane in that order. Undecane was shown to have tumor promoting activity. Undecane (25 mg) and benzo(a)pyrene (BP) (5 ug) applied to the skin of female mice, 3 times per wk for 440 days, induced papillomas in 41 of 50 animals. BP alone induced tumors in 12 of 50 animals in the same time, while undecane alone did not produce tumors. Rats were given up to 1000 mg/kg/day undecane by gavage; males dosed for 46 days including 14 days prior to mating, and during the mating period; females dosed for 14 days prior to mating, during mating and gestation periods and postnatally until the 3rd day of nursing. No treatment-related effects were observed at any dose levels on any of the reproductive parameters evaluated in this study. However, body weight gain was decreased in male and female offspring at the 1000 mg/kg/day dose level. No effects were noted in terms of viability, general condition, or gross observation of the offspring. Undecane mutagenicity tested negative using the Ames Salmonella typhimurium assay, with and without metabolic activation. The following genotoxicity studies were negative: Cell transformation and cotransformation with benzo(a)pyrene on Syrian hamster embryo cells, and intercellular communication on Syrian hamster embryo cells. Undecane was negative in the rec-assay with Bacillus subtilis strains M45 (rec-) and H17 (rec+).
Toxicity Data
LC50 (rat) > 442 ppm/8H
Interactions
... The present study is an ongoing approach to assess the dose-related percutaneous absorption of a number of aliphatic and aromatic hydrocarbons. The first treatment (1X) was comprised of mixtures containing undecane (4.1%), dodecane (4.7%), tridecane (4.4%), tetradecane (3%), pentadecane (1.6%), naphthalene (1.1%), and dimethyl naphthalene (1.3% of jet fuels) in hexadecane solvent using porcine skin flow through diffusion cell. Other treatments (n = 4 cells) were 2X and 5X concentrations. Perfusate samples were analyzed with gas chromatography-flame ionization detector (GC-FID) using head space solid phase micro-extraction fiber technique. We have standardized the assay to have a good linear correlation for all the tested components in media standards. Absorption parameters including diffusivity, permeability, steady state flux, and percent dose absorbed were estimated for all the tested hydrocarbons. This approach provides a baseline to access component interactions among themselves and with the diluent (solvents). A quantitative structure permeability relationship (QSPR) model was derived to predict the permeability of unknown jet fuel hydrocarbons in this solvent system by using their physicochemical parameters. Our findings suggested a dose related increase in absorption for naphthalene and dimethyl naphthalene (DMN).
Non-Human Toxicity Values
LD50 Rat oral > 2000 mg/kg
LC50 Rat oral > 142 ppm/8 hr
LD50 Mouse iv 517 mg/kg
References

[1]. Choi D, Kang W, Park T. Anti-Allergic and Anti-Inflammatory Effects of Undecane on Mast Cells and Keratinocytes. Molecules. 2020;25(7):1554. Published 2020 Mar 28.

Additional Infomation
Undecane appears as a colorless liquid. Insoluble in water and less dense than water. Used to make other chemicals.
Undecane is a straight-chain alkane with 11 carbon atoms.
Undecane has been reported in Camellia sinensis, Aristolochia triangularis, and other organisms with data available.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C11H24
Molecular Weight
156.31
Exact Mass
156.187
CAS #
1120-21-4
Related CAS #
Undecane-d24;164858-54-2
PubChem CID
14257
Appearance
Colorless to light yellow liquid
Density
0.7±0.1 g/cm3
Boiling Point
196.3±3.0 °C at 760 mmHg
Melting Point
−26 °C(lit.)
Flash Point
60.0±0.0 °C
Vapour Pressure
0.6±0.2 mmHg at 25°C
Index of Refraction
1.419
LogP
6.6
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
0
Rotatable Bond Count
8
Heavy Atom Count
11
Complexity
49.1
Defined Atom Stereocenter Count
0
SMILES
CCCCCCCCCCC
InChi Key
RSJKGSCJYJTIGS-UHFFFAOYSA-N
InChi Code
InChI=1S/C11H24/c1-3-5-7-9-11-10-8-6-4-2/h3-11H2,1-2H3
Chemical Name
undecane
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 6.3975 mL 31.9877 mL 63.9754 mL
5 mM 1.2795 mL 6.3975 mL 12.7951 mL
10 mM 0.6398 mL 3.1988 mL 6.3975 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us