Opaganib (ABC294640)

Alias: ABC294640; ABC 294640; ABC-294640; Trade name Yeliva
Cat No.:V1506 Purity: ≥98%
Opaganib (formerly known as ABC294640; ABC-294640; Trade name Yeliva) is a novel, potent, selective, competitive and orally bioavailable aryladamantane analog and selective sphingosine kinase-2 (SphK2) inhibitor with potential anticancer activity.
Opaganib (ABC294640) Chemical Structure CAS No.: 915385-81-8
Product category: S1P Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Opaganib (ABC294640):

  • Opaganib (ABC294640) HCl
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Opaganib (formerly known as ABC294640; ABC-294640; Trade name Yeliva) is a novel, potent, selective, competitive and orally bioavailable aryladamantane analog and selective sphingosine kinase-2 (SphK2) inhibitor with potential anticancer activity. It suppresses SphK2 with an IC50 of ~60 μM.ABC294640 exerts a Ki value of 9.8 μM and competes with sphingosine in the kinetic assay. Because it targets SK2's sphingosine binding site, ABC294640 exhibits no inhibitory activity against the other 20 kinases testing. The IC50 value of 26μM for ABC294640 is used to stop S1P production in MDA-MB-231 cells. Rat hematocrit temporarily drops slightly when opapanib is administered. Research on the haematological system shows that when rats are given either 100 or 250 mg/kg/day, their hematocrit and red blood cell count drop by about 20%. The rats also show a minor rise in neutrophils and a drop in basophils.

Biological Activity I Assay Protocols (From Reference)
Targets
SphK2 ( IC50 = 60 μM )
ln Vitro

In vitro activity: ABC294640 significantly modifies the ceramide/S1P ratio, which is consistent with the suppression of SK activity in MDA-MB-231 cells. ABC294640 has been shown to suppress tumor cell proliferation, with IC50 values ranging from roughly 6 to 48 μM. It also simultaneously reduces tumor cell migration and causes microfilament loss. ABC294640 causes A-498, PC-3, and MDA-MB-231 cells to undergo nonapoptotic cell death, lysosome morphological changes, autophagosome formation, and an increase in acidic vesicles. ABC294640 reduces E2-stimulated ERE-luciferase activity in MCF-7 and ER-transfected HEK293 cells.

ln Vivo
ABC294640 (100 mg/kg, p.o.) significantly reduces tumor growth in mice with mammary adenocarcinoma xenografts; this effect is linked to S1P depletion. ABC294640 increases autophagy markers and delays tumor growth in mice with severe combined immunodeficiency carrying A-498 xenografts. ABC294640 enhances liver function and survival by preventing inflammation brought on by liver transplantation and the interaction between innate and adaptive immunity, two key processes that cause and exacerbate graft injury.
Enzyme Assay
An HPLC-based SK activity assay that was recently developed is used to determine the IC50 values for ABC294640 and DMS. The test compounds are, in short, incubated with recombinant SK1 or SK2 and NBD-Sph in the isozyme-selective assay buffers described below, containing 400 μM MgCl2, 100 μM ATP, and 1 mg/ml fatty acid-free bovine serum albumin. The following is how HPLC separates the product, or NBD-S1P, from NBD-Sph: Utilizing a Waters 2495 fluorescence detector, a C8 Chromolith RP-8e column (100 × 4.6 mm) and a 1 ml/min mobile phase (pH 2.5 sodium phosphate buffer with acetonitrile/20 mM) at 45:55 make up the Waters 2795 HPLC system. Fluorescence is observed with excitation at 465 nm and emission at 531 nm. The NBD-S1P/(NBD-Sph + NBD-S1P) ratio is used to calculate the level of SK activity. 20 mM Tris, pH7.4, 5 mM EDTA, 5 mM EGTA, 3 mM β-mercaptoethanol, 5% glycerol, 1× protease inhibitors, and 1× phosphatase inhibitors were all present in each SK-isozyme selective assay buffer. 0.25% (final) Triton X-100 is added to the SK1 assay buffer, and 1 M (final) KCl is added to the SK2 buffer. The kinase reaction is stopped by adding 1.5 volumes of methanol after the assays have been running for two hours at room temperature. The samples are centrifuged at 20,000 g for 10 minutes to remove the precipitated protein, and the supernatants are then subjected to HPLC analysis. The ADP Quest assay system is used to measure kinase activity in the presence of different concentrations of sphingosine and ABC294640 in experiments to determine the Ki for inhibition of SK2 by ABC294640. In order to ascertain the impact of ABC294640 on cellular SK activity, near-confluent MDA-MB-231 cells undergo an overnight serum starvation protocol followed by exposure to different concentrations of ABC294640. Next, [3H]sphingosine is added to the cells at a final concentration of 1 μM. The cells take up the exogenous sphingosine, which is converted to S1P via SK activity, and [3H]S1P is separated from [3H]sphingosine by extraction and quantified by scintillation counting.
Cell Assay
In order to ascertain the impact of the test compounds on proliferation, 96-well microtiter plates are seeded with cells (1025LU, Hep-G2, A-498, MCF-7, Caco-2, MDA-MB-231, HT-29, Panc-1, DU145, T24, and SK-OV-3 cell lines) and left to adhere for a full day. Separate wells are filled with varying concentrations of ABC294640, and the cells are incubated for a further 72 hours. Using the sulforhodamine-binding assay, the number of viable cells is ascertained at the conclusion of this time. As a percentage of sulforhodamine-binding compared to control cultures, the percentage of cells killed is computed. GraphPad Prism is used to perform regression analyses of inhibition curves.
Animal Protocol
Dissolved in 0.375% Polysorbate-80 in PBS; 100 mg/kg; oral givage
Female BALB/c mice bearing JC tumors
References

[1]. J Pharmacol Exp Ther . 2010 Apr;333(1):129-39.

[2]. J Pharmacol Exp Ther . 2010 May;333(2):454-64.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C23H25CLN2O
Molecular Weight
380.91
Exact Mass
380.17
CAS #
915385-81-8
Related CAS #
1185157-59-8 (HCl); 915385-81-8
Appearance
White solid powder
SMILES
C1C2CC3(CC1CC(C2)(C3)C(=O)NCC4=CC=NC=C4)C5=CC=C(C=C5)Cl
InChi Key
CAOTVXGYTWCKQE-UHFFFAOYSA-N
InChi Code
InChI=1S/C23H25ClN2O/c24-20-3-1-19(2-4-20)22-10-17-9-18(11-22)13-23(12-17,15-22)21(27)26-14-16-5-7-25-8-6-16/h1-8,17-18H,9-15H2,(H,26,27)
Chemical Name
3-(4-chlorophenyl)-N-(pyridin-4-ylmethyl)adamantane-1-carboxamide
Synonyms
ABC294640; ABC 294640; ABC-294640; Trade name Yeliva
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~76 mg/mL (~199.5 mM)
Water: <1 mg/mL
Ethanol: ~28 mg/mL (~73.5 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6253 mL 13.1265 mL 26.2529 mL
5 mM 0.5251 mL 2.6253 mL 5.2506 mL
10 mM 0.2625 mL 1.3126 mL 2.6253 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT04207255 Active
Recruiting
Drug: Opaganib
Drug: Abiraterone
Prostate Cancer Medical University of South
Carolina
March 27, 2020 Phase 2
NCT04414618 Completed Drug: Opaganib
Drug: Placebo
Coronavirus Infections RedHill Biopharma Limited July 2, 2020 Phase 2
NCT04435106 Completed Drug: Opaganib
Drug: Standard of Care
Coronavirus Infections Shaare Zedek Medical Center April 3, 2020 N/A
NCT04467840 Completed Drug: Opaganib
Drug: Placebo
COVID-19
Lung Infection
RedHill Biopharma Limited August 21, 2020 Phase 2
Phase 3
NCT03377179 Completed Drug: ABC294640
Drug: Hydroxychloroquine
Sulfate 200 MG
Cholangiocarcinoma
Cholangiocarcinoma, Perihilar
RedHill Biopharma Limited March 7, 2018 Phase 2
Biological Data
  • ABC294640

    ABC294640 induces nonapoptotic cell death in A-498 cells. J Pharmacol Exp Ther. 2010 May;333(2):454-64.
  • ABC294640

    Effects of SK inhibitors on LC3 cleavage and formation of autophagosomes in A-498 cells. J Pharmacol Exp Ther. 2010 May;333(2):454-64.
  • ABC294640

    Activation of autophagy in PC-3 and MDA-MB-231 cells. J Pharmacol Exp Ther. 2010 May;333(2):454-64.
Contact Us Back to top