Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Purity: ≥98%
ADU-S100 (formerly known as MIW-815; MIW815; ML RR-S2 CDA), a cyclic dinucleotide, is a novel and potent agonist of STING (Stimulator of Interferon Genes) with immunomodulatory and anticancer activities. ADU-S100 has the potential to be used in cancer immunotherapy. It elicits potent and durable anti-tumor immunity when administered intratumorally in pre-clinical syngeneic tumor models. As of 2018, it has entered phase I clinical trials for the treatment of cancer. Clinical candidate STING agonist ADU-S100 (S100) is used in an intratumoral dosing regimen optimized for adaptive immunity to uncover requirements for a T cell-driven response compatible with checkpoint inhibitors (CPIs).
Targets |
STING/stimulator of interferon genes
|
---|---|
ln Vitro |
ADU-S100's free base shape is erratic. ADU-S100 ammonium salt increases stability and lipophilicity in comparison to endogenous and pathogen-derived cyclic dinucleotides (CDNs), hence stimulating a noteworthy upregulation of STING signaling [1]. In human monocytes THP-1, ADU-S100 produced more type I IFN than CDA. On the other hand, all five hSTING alleles, including the refractory hSTINGREF and hSTINGQ, are efficiently activated by mixed disulfide-linked CDN derivatives (ML RR-CDA, ML RR-S2 CDG, and ML RR-S2 cGAMP). bit gene. When compared to endogenous ML cGAMP and the TLR3 agonist Poly I:C, ADU-S100 elicited the highest production of IFN-β and the proinflammatory cytokines TNF-α, IL-6, and MCP-1 on a molar equivalent basis. It was also shown that ADU-S100 stimulated TBK1 and IRF3 phosphorylation in mouse bone marrow macrophages (BMM) as well as STING aggregation. In comparison to ML cGAMP, ADU-S100 generates noticeably larger amounts of IFN-α [1].
|
ln Vivo |
ADU-S100 outperformed endogenous ML cGAMP in its anti-tumor control capacity. In B16 tumor-bearing mice, a dose response study of ADU-S100 compounds was carried out to ascertain the best anti-tumor dose level that would maximize tumor antigen-specific CD8+ T cell responses and increase long-term survival to 50%[1].
|
Enzyme Assay |
Luciferase Assay[1]
104 HEK293T cells were seeded in 96-well plates and transiently transfected with human IFN-β firefly reporter plasmid(Fitzgerald et al., 2003) and TK-Renilla luciferase reporter for normalization. The following day, cells were stimulated with 10 μM of eachADU-S100 or 100 μg/ml DMXAA using digitonin permeabilization (50 mM HEPES, 100 mM KCL, 3 mM MgCl2, 0.1 mM DTT, 85 mM Sucrose, 0.2% BSA, 1 mM ATP, 0.1 mM GTP, 10 ug/ml digitonin) to ensure uniform uptake. After 20 min, stimulation mixtures were removed and normal media was added. After a total of 6 hours, cell lysates were prepared and reporter gene activity measured using the Dual Luciferase Assay System on a Spectramax M3 luminometer. Differential Scanning Fluorimetry[1] Thermal shift assays were performed as (Cavlar et al., 2013). Assays were conducted with STING ligand binding domain at 1 mg/ml with or without various ADU-S100 at 1 mM in 20mM Tris-HCL, 150 mM NaCl, pH 7.5 and 1:500 dilution of SYPRO Orange Dye. The fluorescence as a function of temperature was recorded in a CFX 96 real time PCR machine reading on the HEX channel EX 450–490 EM 560–580 nm. The temperature gradient was from 15–80°C ramping 0.5°C per 15 seconds. Curves were fit to a Boltzmann sigmoidal to establish the midpoint of thermal unfolding (Tm). |
Cell Assay |
BM-DCs from WT or STING−/− mice were stimulated with 25 μg/ml DMXAA or 100 ng/ml LPS for 4 hours. Total RNA was isolated using the RNeasy® kit and incubated with Deoxyribonuclease I, Amplification Grade. cDNA was synthesized using High Capacity cDNA Reverse Transcription Kit and expression of cytokines was measured by real-time qRT-PCR using specific primers/probes for mouse INF-β, TNF-α, IL-6 and IL12p40, and pan-specific primers were to quantify expression of the IFN-α family. Primer sequences are listed in Table 1 in Supplementary Materials. PCR reactions were performed in the 7300 Real Time PCR system. The results are expressed as 2−ΔCt using 18s as endogenous control.
WT BMM were stimulated with ADU-S100 at 5 μM in HBSS with the addition of Effectene transfection reagent (per kit protocol). Human PBMCs were stimulated as indicated. Stimulated cells were and assessed by real-time qRT-PCR for gene expression of IFN-β1, MCP-1, TNF-α and IL-6 using the PrimePCR RNA purification and cDNA analysis system, and run on the CFX96 gene cycler. Relative normalized expression was determined by comparing induced target gene expression to unstimulated controls, using the reference genes Gapdh and Ywhaz (mouse) and GusB and Pgk1 (human), genes confirmed to have a coefficient variable (CV) below 0.5 and M value below 1, and thus did not vary with different treatment conditions. |
Animal Protocol |
10~6 of B16-SIY tumor cells, 5 × 10~4 B16.F10 tumor cells, 10~5 4T-1 and CT26, or 106 other tumor cells were injected s.c. in 100 μl DPBS or HBSS on the right flank of mice. Following tumor implantation, mice were randomized into treatment groups. When tumors were 100–200 mm3 in volume (5–7 mm wide), either one single or three doses of DMXAA resuspended in 7.5% of NaHCO3, or CDNs formulated in HBSS or vehicle control, were injected IT. Measurements of tumors were performed twice per week using calipers, and the tumor volume was calculated with the formula: V= (length × width2)/2. In some experiments, tumor-free survivors were rechallenged with tumor cells on the opposite flank several weeks after the injection of the primary tumor. Naïve mice were used as controls. For the contralateral experiments, mice were implanted on both flanks and only one tumor was treated. For the B16 melanoma lung metastasis experiments, mice were implanted on the flank with 5 × 104 cells B16.F10 on day 0, and then injected intravenously with 1 × 105 cells on day 7. Lungs were harvested on day 28. Administration of compounds, measurements of tumors and counting of lung tumors were performed in a blinded fashion.[1]
|
References | |
Additional Infomation |
ADU-S100 (MIW815) is a synthetic cyclic dinucleotide (CDN) agonist (activator) of Stimulator of Interferon Genes (STING), a receptor crucial to activate the innate (endogenous) immune system. ADU-S100 (MIW815) activates all known human and mouse STINGs, and effectively induces the expression of cytokines and chemokines, leading to a robust and durable antigen-specific T-cell mediated immune response against cancer cells.
DrugBank
STING-activating Cyclic Dinucleotide Agonist MIW815 is a synthetic, cyclic dinucleotide (CDN) and agonist of stimulator of interferon genes protein (STING; transmembrane protein 173; TMEM173), with potential immunomodulating and antineoplastic activities. Upon intratumoral administration, the STING agonist MIW815 binds to STING and stimulates STING-mediated pathways. This activates the immune response through the activation of certain immune cells, including dendritic cells (DCs), which induces the expression of cytokines and chemokines, and leads to an antigen-specific T-cell mediated immune response against cancer cells. STING, a transmembrane protein that activates immune cells in the tumor microenvironment, plays a key role in the activation of the innate immune system.
Spontaneous tumor-initiated T cell priming is dependent on IFN-β production by tumor-resident dendritic cells. On the basis of recent observations indicating that IFN-β expression was dependent upon activation of the host STING pathway, we hypothesized that direct engagement of STING through intratumoral (IT) administration of specific agonists would result in effective anti-tumor therapy. After proof-of-principle studies using the mouse STING agonist DMXAA showed a potent therapeutic effect, we generated synthetic cyclic dinucleotide (CDN) derivatives that activated all human STING alleles as well as murine STING. IT injection of STING agonists induced profound regression of established tumors in mice and generated substantial systemic immune responses capable of rejecting distant metastases and providing long-lived immunologic memory. Synthetic CDNs have high translational potential as a cancer therapeutic.[1] |
Molecular Formula |
C20H24N10O10P2S2
|
|
---|---|---|
Molecular Weight |
690.54
|
|
Exact Mass |
690.06
|
|
Elemental Analysis |
C, 34.79; H, 3.50; N, 20.28; O, 23.17; P, 8.97; S, 9.29
|
|
CAS # |
1638241-89-0
|
|
Related CAS # |
ADU-S100 disodium salt;1638750-95-4;ADU-S100 ammonium salt;1638750-96-5;ADU-S100 enantiomer ammonium salt
|
|
Appearance |
White to off-white solid powder
|
|
SMILES |
OC1([H])[C@](O[P@](S)(OC[C@](O[C@@H](N2C3=NC=NC(N)=C3N=C2)[C@@H]4O)([H])[C@@]4([H])O5)=O)([H])[C@H](N6C7=NC=NC(N)=C7N=C6)O[C@]1([H])CO[P@]5(S)=O
|
|
InChi Key |
IZJJFUQKKZFVLH-YBVMPXGUSA-N
|
|
InChi Code |
InChI=1S/C20H24N10O10P2S2/c21-15-9-17(25-3-23-15)29(5-27-9)19-12(32)13-8(38-19)2-36-42(34,44)40-14-11(31)7(1-35-41(33,43)39-13)37-20(14)30-6-28-10-16(22)24-4-26-18(10)30/h3-8,11-14,19-20,31-32H,1-2H2,(H,33,43)(H,34,44)(H2,21,23,25)(H2,22,24,26)/t7-,8-,11-,12-,13-,14-,19-,20-,41-,42-/m1/s1
|
|
Chemical Name |
(2R,5R,7R,8R,10R,12aR,14R,15R,15aS,16R)-7,14-bis(6-amino-9H-purin-9-yl)-15,16-dihydroxy-2,10-dimercaptooctahydro-12H-5,8-methanofuro[3,2-l][1,3,6,9,11]pentaoxa[2,10]diphosphacyclotetradecine 2,10-dioxide
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: This product requires protection from light (avoid light exposure) during transportation and storage. |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.4481 mL | 7.2407 mL | 14.4814 mL | |
5 mM | 0.2896 mL | 1.4481 mL | 2.8963 mL | |
10 mM | 0.1448 mL | 0.7241 mL | 1.4481 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
ML RR-S2 CDA promotes immune-mediated tumor rejection.Cell Rep.2015 May 19;11(7):1018-30. th> |
---|
Modified CDNs potently activate STING and signal through all human STING allelic variants.Cell Rep.2015 May 19;11(7):1018-30. td> |
Synthetic CDN modifications significantly improve anti-tumor efficacy in established B16 tumors.Cell Rep.2015 May 19;11(7):1018-30. td> |