yingweiwo

Almorexant HCl (ACT 078573)

Alias: ACT078573 HCl; Almorexant hydrochloride; 913358-93-7; Almorexant (hydrochloride); act-078573 hydrochloride; O4Z94D9A99; UNII-O4Z94D9A99; (R)-2-((S)-6,7-Dimethoxy-1-(4-(trifluoromethyl)phenethyl)-3,4-dihydroisoquinolin-2(1H)-yl)-N-methyl-2-phenylacetamide hydrochloride; ACT-078573 HCl; Almorexant HCl; ACT 078573 HCl
Cat No.:V1308 Purity: ≥98%
Almorexant HCl (also known as ACT-078573; ACT078573), the hydrochloride salt of Almorexant, is a novel, potent, orally bioactive, competitive and dual orexin1/2 receptor antagonist indicated for the treatment of sleep disorders/insomnia.
Almorexant HCl (ACT 078573)
Almorexant HCl (ACT 078573) Chemical Structure CAS No.: 913358-93-7
Product category: OX Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
2mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of Almorexant HCl (ACT 078573):

  • Almorexant (ACT 078573)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Almorexant HCl (also known as ACT-078573; ACT078573), the hydrochloride salt of Almorexant, is a novel, potent, orally bioactive, competitive and dual orexin1/2 receptor antagonist indicated for the treatment of sleep disorders/insomnia. It inhibits OX1 and OX2 receptors with IC50s of 6.6 nM and 3.4 nM, respectively. Almorexant exhibits competitive antagonistic effects on hOX1R and noncompetitive-like effects on hOX2R in the inositol phosphates assay. Almorexant also has an impact on sleep in a variety of species, including humans. In normal C57BL/6 mice, it dose-dependently shortens the amount of time spent awake and lengthens the amount of time spent in NREM and REM sleep.

Biological Activity I Assay Protocols (From Reference)
Targets
human OX2R ( Kd = 0.17 nM ); human OX1R ( Kd = 1.3 nM ); Caspase-3
ln Vitro

In vitro activity: Almorexant inhibits the rise in intracellular Ca2+ that is brought about by 10 nM human orexin-A in Chinese hamster ovarian cells, with IC50 values for the OX1 and OX2 receptors of 16 nM (rat) and 13 nM (human), respectively.[1]

ln Vivo
Almorexant (300 mg/kg p.o.) increases electrophysiological indices of both REM and non-REM sleep and decreases alertness in male Wistar rats. Almorexant (100 mg/kg p.o.) increases surrogate markers of REM sleep and induces somnolence in dogs.[1] Without causing neurogenesis, almorexant produces a strong antidepressant-like effect and restores the HPA axis defect caused by stress.[2] Furthermore, in models of high-drinking rodents, Almorexant also decreases ethanol self-administration.[3]
Enzyme Assay
Recent preclinical and clinical research has shown that Almorexant promotes sleep in animals and humans without disrupting the sleep architecture. Here, the pharmacology and kinetics of [(3)H]Almorexant binding to human orexin 1 receptor (OX(1))- and human orexin 2 receptor (OX(2))-human embryonic kidney 293 membranes were characterized and compared with those of selective OX(1) and OX(2) antagonists, including 1-(5-(2-fluoro-phenyl)-2-methyl-thiazol-4-yl)-1-((S)-2-(5-phenyl-(1,3,4)oxadiazol-2-ylmethyl)-pyrrolidin-1-yl)-methanone (SB-674042), 1-(6,8-difluoro-2-methyl-quinolin-4-yl)-3-(4-dimethylamino-phenyl)-urea (SB-408124), and N-ethyl-2-[(6-methoxy-pyridin-3-yl)-(toluene-2-sulfonyl)-amino]-N-pyridin-3-ylmethyl-acetamide (EMPA). The effect of these antagonists was also examined in vitro on the spontaneous activity of rat ventral tegmental area (VTA) dopaminergic neurons. [(3)H]Almorexant bound to a single saturable site on hOX(1) and hOX(2) with high affinity (K(d) of 1.3 and 0.17 nM, respectively). In Schild analyses using the [(3)H]inositol phosphates assay, Almorexant acted as a competitive antagonist at hOX(1) and as a noncompetitive-like antagonist at hOX(2). In binding kinetic analyses, [(3)H]almorexant had fast association and dissociation rates at hOX(1), whereas it had a fast association rate and a remarkably slow dissociation rate at hOX(2). In the VTA, orexin-A potentiated the basal firing frequency to 175 +/- 17% of control in approximately half of the neurons tested. In the presence of 1 microM SB-674042 or SB-408124, the effect of orexin-A was only partially antagonized. However, in the presence of 1 microM EMPA or 1 microM Almorexant, the effect of orexin-A was completely antagonized. In conclusion, Almorexant exhibited a noncompetitive and long-lasting pseudo-irreversible mode of antagonism as a result of its very slow rate of dissociation from OX(2). The electrophysiology data suggest that OX(2) might be more important than OX(1) in mediating the effect of orexin-A on slow-firing of VTA dopaminergic neurons.[2]
According to binding kinetic analyses, at hOX(1), [(3)H]almorexant exhibited fast association and dissociation rates, while at hOX(2), it exhibited a fast association rate and a remarkably slow dissociation rate.
Cell Assay
Quantification of apoptotic cells by annexin V labelling[1]
AsPC-1, SW 1990, HPAF-II and HPAF-II/hOX1R cells (seeded at 5 × 104 cells/well) were grown as described above. The culture medium was then replaced every 24 hr with fresh medium with or without 1 μM orexin-A or Almorexant in the presence or in the absence of the SHP-2 inhibitor, NSC-87877 (50 μM). After 48 hr, apoptotic cells were determined using the Guava NexinTM kit. Results are expressed as the percentage of apoptotic phycoerythrin-labelled Annexin V (Annexin V-PE) positive cells and are the means of 3 independent analyses.
Caspase-3 activity detection[1]
AsPC-1 cells were pretreated 24 h without or with 50 μM SHP1/2 inhibitor NSC-87877. 5.106 semiconfluent cells were then treated with 1 μM orexin-A or 1 μM Almorexant in fresh culture medium at 37° C for 24 h. Caspase-3 activity detection was performed according to the manufacturer's instructions using the caspase-3 assay colorimetric kit. The caspase-3 activity measurement is based on spectrophotometric detection at 405 nm of the chromophore p-nitroaniline after cleavage by the activated caspase-3 from the labeled substrate DEVD-p-nitroaniline. Results are expressed as the optic density (O.D.) at 405 nm for 200 μg of protein for each sample and are the means of 3 independent analyses.
Almorexant (also known as ACT078573) is a novel, potent, orally bioactive, competitive, oral bioactive, dual orexin receptor antagonist, with IC50 values for the OX1 and OX2 receptors of 6.6 nM and 3.4 nM, respectively. It might be used to treat sleeplessness. Almorexant functions as a competitive antagonist of hOX1R and a noncompetitive-like antagonist of hOX2R in the inositol phosphates assay. Moreover, Almorexant affects sleep in a variety of species, including humans.
Animal Protocol
Tumorigenicity assay in nude mice xenografts[1]
AsPC-1, HPAF-II and HPAF-II/OX1R cells were inoculated subcutaneously into the flank of anesthetized mice as previously described. In an effort to develop more reliable preclinical models, we have established a subcutaneous patient-derived xenograft (PDX) model. Tumoral cells isolated from a human pancreatic cancer were inoculated into the flank of mice. Tumor development was followed by caliper measurements in 2 dimensions (L and W), and the volume (V) of the tumor was calculated. Orexin-A or Almorexant was administered by intraperitoneal injections, starting the day of cell lines subcutaneous inoculation or 14 days (AsPC-1 cells) or 40 days (PDX cells) after this date when tumours were established. Control mice received PBS. After necropsy, tumors were then resected, weighted and analyzed.
Patients or participants: Nine TG mice and 10 WT mice. Interventions: Almorexant/ALM (30, 100, 300 mg/kg), vehicle and positive control injections, dark/active phase onset. Measurements and results: During the 12-h dark period after dosing, ALM exacerbated cataplexy in TG mice and increased nonrapid eye movement sleep with heightened sleep/wake fragmentation in both genotypes. ALM showed greater hypnotic potency in WT mice than in TG mice. The 100 mg/kg dose conferred maximal promotion of cataplexy in TG mice and maximal promotion of REM sleep in WT mice. In TG mice, ALM (30 mg/ kg) paradoxically induced a transient increase in active wakefulness. Core body temperature (Tb) decreased after acute Hcrt receptor blockade, but the reduction in Tb that normally accompanies the wake-to-sleep transition was blunted in TG mice. Conclusions: These complex dose- and genotype-dependent interactions underscore the importance of effector mechanisms downstream from Hcrt receptors that regulate arousal state. Cataplexy promotion by ALM warrants cautious use of Hcrt antagonists in patient populations with Hcrt neurodegeneration, but may also facilitate the discovery of anticataplectic medications.[3]
Following administration of high doses of Almorexant (300 mg/kg, p.o.), scopolamine (0.8 mg/kg, i.p.), combination Almorexant-scopolamine, or vehicle alone, rats were trained on a Morris water maze spatial navigation task, or on a passive avoidance task.[4]
Dissolved in Polyethylene glycol (PEG) 400 or 0.25% methylcellulose in water; 300 mg/kg; p.o. administration
Wistar rats.
References

[2]. Biochemical and electrophysiological characterization of almorexant, a dual orexin 1 receptor (OX1)/orexin 2 receptor (OX2) antagonist: comparison with selective OX1 and OX2 antagonists. Mol Pharmacol. 2009 Sep;76(3):618-31.

[3]. NAlmorexant promotes sleep and exacerbates cataplexy in a murine model of narcolepsy. Sleep. 2013 Mar 1;36(3):325-36.

[4]. Intact learning and memory in rats following treatment with the dual orexin receptor antagonist almorexant. Psychopharmacology (Berl). 2010 Oct;212(2):145-54.

[5]. Nat Med. 2007 Feb;13(2):150-5.

[6]. Neuropsychopharmacology. 2012 Sep;37(10):2210-21.

[7]. Front Neurosci. 2014 Feb 25:8:33.

Additional Infomation
Almorexant is a member of isoquinolines.
Drug Indication
Investigated for use/treatment in sleep disorders and insomnia.
Pancreatic ductal adenocarcinoma (PDAC) is still the poorest prognostic tumor of the digestive system. We investigated the antitumoral role of orexin-A and almorexant in PDAC. We analyzed the orexin receptor type 1 (OX1R) expression by immunohistochemistry in human normal pancreas, PDAC and its precursor dysplastic intraepithelial lesions. We used PDAC-derived cell lines and fresh tissue slices to study the apoptotic role of hypocretin-1/orexin-A and almorexant in vitro and ex vivo. We analyzed in vivo the hypocretin-1/orexin-A and almorexant effect on tumor growth in mice xenografted with PDAC cell lines expressing, or not, OX1R. Ninety-six percent of PDAC expressed OX1R, while adjacent normal exocrine pancreas did not. OX1R was expressed in pre-cancerous lesions. In vitro, under hypocretin-1/orexin-A and almorexant, the OX1R-positive AsPC-1 cells underwent apoptosis, abolished by the tyrosine phosphatase SHP2 inhibitor, NSC-87877, whereas the OX1R-negative HPAF-II cell line did not. These effects were mediated by phosphorylation of OX1R and recruitment of SHP2. Ex vivo, caspase-3 positive tumor cells were significantly higher in fresh tumour slices treated 48h with hypocretin-1/orexin-A, as compared to control, whereas cellular proliferation, assessed by Ki-67 index, was not modified. In vivo, when AsPC-1 cells or patient-derived cells were xenografted in nude mice, hypocretin-1/orexin-A or almorexant, administrated both starting the day of cell line inoculation or after tumoral development, strongly slowed tumor growth. Hypocretin-1/orexin-A and almorexant induce, through OX1R, the inhibition of PDAC cellular growth by apoptosis. Hypocretins/orexins and almorexant might be powerful candidates for the treatment of PDAC.[1]
Study objectives: Humans with narcolepsy and orexin/ataxin-3 transgenic (TG) mice exhibit extensive, but incomplete, degeneration of hypo-cretin (Hcrt) neurons. Partial Hcrt cell loss also occurs in Parkinson disease and other neurologic conditions. Whether Hcrt antagonists such as almorexant (ALM) can exert an effect on the Hcrt that remains after Hcrt neurodegeneration has not yet been determined. The current study was designed to evaluate the hypnotic and cataplexy-inducing efficacy of a Hcrt antagonist in an animal model with low Hcrt tone and compare the ALM efficacy profile in the disease model to that produced in wild-type (WT) control animals. Design: Counterbalanced crossover study. Setting: Home cage. Patients or participants: Nine TG mice and 10 WT mice. Interventions: ALM (30, 100, 300 mg/kg), vehicle and positive control injections, dark/active phase onset. [3]
Rationale: Orexins play a key role in the maintenance of alertness and are implicated in the modulation of diverse physiological processes, including cognitive function. Almorexant, a dual orexin receptor antagonist, transiently and reversibly blocks the action of orexin peptides at both OX(1) and OX(2) receptors and increases time spent in rapid eye movement (REM) and non-REM sleep. Objectives: We explored the direct effects on learning and memory of single and repeated administration of almorexant in rats. Methods: Following administration of high doses of almorexant (300 mg/kg, p.o.), scopolamine (0.8 mg/kg, i.p.), combination almorexant-scopolamine, or vehicle alone, rats were trained on a Morris water maze spatial navigation task, or on a passive avoidance task. Results: Rats treated with almorexant learned the spatial navigation task with similar efficacy as vehicle-treated animals. After 4 days, almorexant-but not vehicle-treated rats had established spatial memory; after 8 days, spatial memory had been established in both vehicle-and almorexant-treated rats. Scopolamine-treated rats failed to learn the spatial task. Both vehicle-and almorexant-but not scopolamine-treated rats demonstrated passive avoidance learning. Almorexant did not ameliorate scopolamine-induced impairment of learning in either task. Conclusions: Rats treated with almorexant are fully capable of spatial and avoidance learning.[4]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C29H32CLF3N2O3
Molecular Weight
549.02
Exact Mass
548.205
Elemental Analysis
C, 63.44; H, 5.88; Cl, 6.46; F, 10.38; N, 5.10; O, 8.74
CAS #
913358-93-7
Related CAS #
Almorexant; 871224-64-5
PubChem CID
25227440
Appearance
White to off-white solid powder
LogP
6.872
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
8
Heavy Atom Count
38
Complexity
722
Defined Atom Stereocenter Count
2
SMILES
C([C@@H]1N([C@H](C2C=CC=CC=2)C(=O)NC)CCC2=CC(=C(C=C12)OC)OC)CC1C=CC(C(F)(F)F)=CC=1.Cl
InChi Key
BYGBTDRDPBJUBB-LHIMUUITSA-N
InChi Code
InChI=1S/C29H31F3N2O3.ClH/c1-33-28(35)27(20-7-5-4-6-8-20)34-16-15-21-17-25(36-2)26(37-3)18-23(21)24(34)14-11-19-9-12-22(13-10-19)29(30,31)32;/h4-10,12-13,17-18,24,27H,11,14-16H2,1-3H3,(H,33,35);1H/t24-,27+;/m0./s1
Chemical Name
(2R)-2-[(1S)-6,7-dimethoxy-1-[2-[4-(trifluoromethyl)phenyl]ethyl]-3,4-dihydro-1H-isoquinolin-2-yl]-N-methyl-2-phenylacetamide;hydrochloride
Synonyms
ACT078573 HCl; Almorexant hydrochloride; 913358-93-7; Almorexant (hydrochloride); act-078573 hydrochloride; O4Z94D9A99; UNII-O4Z94D9A99; (R)-2-((S)-6,7-Dimethoxy-1-(4-(trifluoromethyl)phenethyl)-3,4-dihydroisoquinolin-2(1H)-yl)-N-methyl-2-phenylacetamide hydrochloride; ACT-078573 HCl; Almorexant HCl; ACT 078573 HCl
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~72 mg/mL (~131.1 mM)
Water: <1 mg/mL
Ethanol: ~51 mg/mL (~92.9 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (4.55 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (4.55 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (4.55 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 2% DMSO+25% β-cyclodextrin+saline: 9 mg/mL

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.8214 mL 9.1071 mL 18.2143 mL
5 mM 0.3643 mL 1.8214 mL 3.6429 mL
10 mM 0.1821 mL 0.9107 mL 1.8214 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT00608985 Completed Drug: almorexant
Drug: Placebo
Primary Insomnia Midnight Pharma, LLC March 2008 Phase 3
NCT01243060 Completed Drug: Almorexant
Drug: Zolpidem 10mg
Healthy Volunteers Northern California Institute of Research and Education May 2011 Not Applicable
NCT00640848 Completed Drug: almorexant Schizoaffective Disorder
Schizophrenia
Insomnia
Primary Insomnia
May 2006 Phase 1
NCT01987739 Completed Drug: 200 mg almorexant
Drug: 400 mg almorexant
Abuse Potential Study Midnight Pharma, LLC September 2009 Phase 1
Biological Data
  • Almorexant HCl

    Effects of the unpredictable chronic mild stress (UCMS) and of 7-week treatment with fluoxetine (FLX, 20 mg/kg per day, per os (p.o.)) or almorexant (ALM, 100 mg/kg per day, p.o.) on the coat state, body weight and locomotor activity.Neuropsychopharmacology.2012 Sep;37(10):2210-21.
  • Almorexant HCl
    Effects of the unpredictable chronic mild stress (UCMS) and 7-week treatment with fluoxetine or almorexanton behaviors.



    Almorexant HCl
    Effects of the unpredictable chronic mild stress (UCMS) and 7-week treatment with fluoxetine or almorexant on the dexamethasone (DEX) suppression test.Neuropsychopharmacology.2012 Sep;37(10):2210-21.
  • Almorexant HCl
    Effects of the unpredictable chronic mild stress (UCMS) and 7-week treatment with fluoxetine (FLX, 20 mg/kg per day, per os (p.o.)) or almorexant (ALM, 100 mg/kg per day, p.o.) on the cell proliferation, neurogenesis and neuronal survival in the dorsal and the ventral hippocampus.Neuropsychopharmacology.2012 Sep;37(10):2210-21.
Contact Us