yingweiwo

AM095 free acid

Alias: AM095; AM 095; AM-095; AM095 free acid
Cat No.:V33497 Purity: ≥98%
AM095 free acid is a novel, potent and selective LPA1 receptor antagonist that inhibited GTPγS binding to Chinese hamster ovary (CHO) cell membranes overexpressing recombinant human or mouse LPA1 with IC50 of 0.98 and 0.73 μM, respectively.
AM095 free acid
AM095 free acid Chemical Structure CAS No.: 1228690-36-5
Product category: LPL Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of AM095 free acid:

  • AM095 sodium
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

AM095 free acid is a novel, potent and selective LPA1 receptor antagonist that inhibited GTPγS binding to Chinese hamster ovary (CHO) cell membranes overexpressing recombinant human or mouse LPA1 with IC50 of 0.98 and 0.73 μM, respectively. It did not show agonism for LPA1. Bioactive phospholipid lysophosphatidic acid (LPA) communicates via the LPA1-6 family of G protein-coupled receptors, which consists of at least six receptors. The LPA type 1 receptor (LPA1) is widely distributed throughout tissues and is involved in the regulation of numerous physiological and pathological cellular processes.

Biological Activity I Assay Protocols (From Reference)
Targets
human LPA1 ( pIC50 = 0.98 μM ); mouse LPA1 ( pIC50 = 0.73 μM )
ln Vitro
AM095 suppresses the calcium flux that LPA causes in CHO cells that have been transfected with mouse or human LPA1. For human or mouse LPA1-transfected CHO cells, the IC50 for AM095 antagonism of LPA-induced calcium flux is 0.025 and 0.023 μM, respectively[1]. Compared to vehicle control, AM095 reduces LPA-induced vasorelaxation by approximately 90% at 10 μM[2]. AM095 inhibits human A2058 melanoma cells (IC50=233 nM) and mouse LPA1 (IC50=778 nM)-driven chemotaxis of CHO cells[3].
ln Vivo
AM095 antagonism of LPA1 and significantly reduces bleomycin induced skin fibrosis [1] AM095 is well tolerated at the doses tested in rats and dogs following oral and intravenous dosing. It also has a high oral bioavailability and a moderate half-life. LPA-stimulated histamine release is dose-dependently reduced by AM095. AM095 reduces the bleomycin-induced rises in inflammatory cell infiltration, collagen, and protein in bronchalveolar lavage fluid. In a mouse unilateral ureteral blockage model, AM095 reduces kidney fibrosis[3].
Enzyme Assay
In assays, both hLPA1/CHO and mLPA1/CHO cells are used. Protease inhibitors, 10 mM HEPES, pH 7.4, 1 mM dithiothreitol, and approximately 20 mL of ice-cold membrane buffer are added to a cell pellet of hLPA1/CHO or mLPA1/CHO cells. The cells are sonicated, and the cell lysate is centrifuged for 10 minutes at 4°C at 2000 rpm. Further centrifuging of the supernatant is done for 70 minutes at 4°C at 25,000 rpm. Using a Potter-Elvehjem tissue grinder, the membrane pellet is resuspended in 5 mL of ice-cold membrane buffer and homogenized. With the Bradford Protein Assay Kit, the final protein concentration is calculated. To 25 to 40 μg of hLPA1/CHO or mLPA1/CHO membranes and 0.1 nM [35S]-GTPηS in buffer (50 mM HEPES, 0.1 mM NaCl, 10 mM MgCl2, 50 μg/mL saponin, pH 7.5) containing 0.2% fatty acid-free human serum albumin and 5 μM GDP, known amounts of AM095 (diluted in dimethyl sulfoxide) or vehicle (dimethyl sulfoxide) are added. The capacity of AM095 to impede GTPγS binding stimulated by 900 nM LPA (18:1) is measured in order to assess LPA1 antagonist activity. As an alternative, the capacity of AM095 to promote GTPηS binding in the absence of LPA is assessed in order to assess agonist effects. Membranes are harvested onto glass filter binding plates and three times washed with cold buffer containing 50 mM HEPES, pH 7.4, 100 mM NaCl, and 10 mM MgCl2 using a Brandel 96-tip cell harvester after reactions are incubated for 30 minutes at 30°C. After plates are dried, a Packard TopCount NXT microplate scintillation counter is used to measure cpm.
Cell Assay
In vitro, AM095 was a potent LPA₁ receptor antagonist because it inhibited GTPγS binding to Chinese hamster ovary (CHO) cell membranes overexpressing recombinant human or mouse LPA₁ with IC₅₀ values of 0.98 and 0.73 μM, respectively, and exhibited no LPA₁ agonism. In functional assays, AM095 inhibited LPA-driven chemotaxis of CHO cells overexpressing mouse LPA₁ (IC₅₀= 778 nM) and human A2058 melanoma cells (IC₅₀ = 233 nM)[3].
Animal Protocol
Mice had their left kidney operated on either by UUO or sham surgery. To put it briefly, the left kidney is exposed by a longitudinal, upper left incision. A 6/0 silk thread is inserted between the renal artery and the ureter after the artery has been identified. To ensure complete ureter ligation, the thread is wound around the ureter and knotted three times. The skin is sutured shut, the kidney is returned to the abdomen, and staples are used to close the incision. The healthy control kidney was the contralateral (right) kidney. Oral gavage of AM095 (30 mg/kg) or the vehicle (water) is administered 1 to 4 hours prior to UUO and on an as-needed basis after that. The kidneys are removed and cut in half for histopathological and biochemical examination of the fibrosis after the mice are put to sleep for eight days using CO2 inhalation. A kidney sample is fixed in 10% neutral buffered formalin and stained with Masson's trichrome in order to measure the amount of fibrosis. To analyze the collagen content biochemically, the other half of the kidney is frozen at -80°C.
Wild type (WT), and LPA₁-knockout (KO) and LPA₂-KO mice were injected subcutaneously with bleomycin or phosphate buffered saline (PBS) once daily for 28 days. Dermal thickness, collagen content, and numbers of cells positive for α-smooth muscle actin (α-SMA) or phospho-Smad2 were determined in bleomycin-injected and PBS-injected skin. In separate experiments, a novel selective LPA₁ antagonist AM095 or vehicle alone was administered by oral gavage to C57BL/6 mice that were challenged with 28 daily injections of bleomycin or PBS. AM095 or vehicle treatments were initiated concurrently with, or 7 or 14 days after, the initiation of bleomycin and PBS injections and continued to the end of the experiments. Dermal thickness and collagen content were determined in injected skin.[1]
ADME/Pharmacokinetics
In vivo, we demonstrated that AM095: 1) had high oral bioavailability and a moderate half-life and was well tolerated at the doses tested in rats and dogs after oral and intravenous dosing, 2) dose-dependently reduced LPA-stimulated histamine release, 3) attenuated bleomycin-induced increases in collagen, protein, and inflammatory cell infiltration in bronchalveolar lavage fluid, and 4) decreased kidney fibrosis in a mouse unilateral ureteral obstruction model. Despite its antifibrotic activity, AM095 had no effect on normal wound healing after incisional and excisional wounding in rats. These data demonstrate that AM095 is an LPA₁ receptor antagonist with good oral exposure and antifibrotic activity in rodent models. [3]
References

[1]. Amelioration of dermal fibrosis by genetic deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma. Arthritis Rheum. 2011 May;63(5):1405-15.

[2]. Lysophosphatidic acid induces vasodilation mediated by LPA1 receptors, phospholipase C, and endothelial nitric oxide synthase. FASEB J. 2014 Feb;28(2):880-90.

[3]. Pharmacokinetic and pharmacodynamic characterization of an oral lysophosphatidic acid type 1 receptor-selective antagonist. Journal of Pharmacology and Experimental Therapeutics (2011), 336(3), 693-700.

Additional Infomation
Objective: Scleroderma (systemic sclerosis [SSc]), is characterized by progressive multiorgan fibrosis. We recently implicated lysophosphatidic acid (LPA) in the pathogenesis of pulmonary fibrosis. The purpose of the present study was to investigate the roles of LPA and two of its receptors, LPA₁ and LPA₂, in dermal fibrosis in a mouse model of SSc. Methods: Wild type (WT), and LPA₁-knockout (KO) and LPA₂-KO mice were injected subcutaneously with bleomycin or phosphate buffered saline (PBS) once daily for 28 days. Dermal thickness, collagen content, and numbers of cells positive for α-smooth muscle actin (α-SMA) or phospho-Smad2 were determined in bleomycin-injected and PBS-injected skin. In separate experiments, a novel selective LPA₁ antagonist AM095 or vehicle alone was administered by oral gavage to C57BL/6 mice that were challenged with 28 daily injections of bleomycin or PBS. AM095 or vehicle treatments were initiated concurrently with, or 7 or 14 days after, the initiation of bleomycin and PBS injections and continued to the end of the experiments. Dermal thickness and collagen content were determined in injected skin. Results: The LPA₁ -KO mice were markedly resistant to bleomycin-induced increases in dermal thickness and collagen content, whereas the LPA₂-KO mice were as susceptible as the WT mice. Bleomycin-induced increases in dermal α-SMA+ and phospho-Smad2+ cells were abrogated in LPA₁-KO mice. Pharmacologic antagonism of LPA₁ with AM095 significantly attenuated bleomycin-induced dermal fibrosis when administered according to either a preventive regimen or two therapeutic regimens. Conclusion: These results suggest that LPA/LPA₁ pathway inhibition has the potential to be an effective new therapeutic strategy for SSc, and that LPA₁ is an attractive pharmacologic target in dermal fibrosis.[1]
Lysophosphatidic acid (LPA) has been implicated as a mediator of several cardiovascular functions, but its potential involvement in the control of vascular tone is obscure. Here, we show that both LPA (18:1) and VPC31143 (a synthetic agonist of LPA1-3 receptors) relax intact mouse thoracic aorta with similar Emax values (53.9 and 51.9% of phenylephrine-induced precontraction), although the EC50 of LPA- and VPC31143-induced vasorelaxations were different (400 vs. 15 nM, respectively). Mechanical removal of the endothelium or genetic deletion of endothelial nitric oxide synthase (eNOS) not only diminished vasorelaxation by LPA or VPC31143 but converted it to vasoconstriction. Freshly isolated mouse aortic endothelial cells expressed LPA1, LPA2, LPA4 and LPA5 transcripts. The LPA1,3 antagonist Ki16425, the LPA1 antagonist AM095, and the genetic deletion of LPA1, but not that of LPA2, abolished LPA-induced vasorelaxation. Inhibition of the phosphoinositide 3 kinase-protein kinase B/Akt pathway by wortmannin or MK-2206 failed to influence the effect of LPA. However, pharmacological inhibition of phospholipase C (PLC) by U73122 or edelfosine, but not genetic deletion of PLCε, abolished LPA-induced vasorelaxation and indicated that a PLC enzyme, other than PLCε, mediates the response. In summary, the present study identifies LPA as an endothelium-dependent vasodilator substance acting via LPA1, PLC, and eNOS.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C₂₇H₂₄N₂O₅
Molecular Weight
456.49
Exact Mass
456.168
Elemental Analysis
C, 71.04; H, 5.30; N, 6.14; O, 17.52
CAS #
1228690-36-5
Related CAS #
AM095; 1345614-59-6
PubChem CID
46213949
Appearance
White to off-white solid powder
Density
1.3±0.1 g/cm3
Boiling Point
641.9±55.0 °C at 760 mmHg
Flash Point
342.0±31.5 °C
Vapour Pressure
0.0±2.0 mmHg at 25°C
Index of Refraction
1.629
LogP
4.94
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
8
Heavy Atom Count
34
Complexity
666
Defined Atom Stereocenter Count
1
SMILES
O=C(O)CC1=CC=C(C2=CC=C(C3=C(NC(O[C@@H](C4=CC=CC=C4)C)=O)C(C)=NO3)C=C2)C=C1
InChi Key
LNDDRUPAICPXIN-GOSISDBHSA-N
InChi Code
InChI=1S/C27H24N2O5/c1-17-25(28-27(32)33-18(2)20-6-4-3-5-7-20)26(34-29-17)23-14-12-22(13-15-23)21-10-8-19(9-11-21)16-24(30)31/h3-15,18H,16H2,1-2H3,(H,28,32)(H,30,31)/t18-/m1/s1
Chemical Name
2-[4-[4-[3-methyl-4-[[(1R)-1-phenylethoxy]carbonylamino]-1,2-oxazol-5-yl]phenyl]phenyl]acetic acid
Synonyms
AM095; AM 095; AM-095; AM095 free acid
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~67.3 mg/mL (~147.4 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.25 mg/mL (4.93 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 22.5 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1906 mL 10.9531 mL 21.9063 mL
5 mM 0.4381 mL 2.1906 mL 4.3813 mL
10 mM 0.2191 mL 1.0953 mL 2.1906 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Structure and pharmacokinetics of AM095. Arthritis Rheum . 2011 May;63(5):1405-15.
  • Inhibition of LPA-induced vasorelaxation by Ki16425 (antagonist of LPA1 and LPA3 receptors) and by AM095 (selective antagonist of LPA1). FASEB J. 2014 Feb;28(2):880-90.
Contact Us