Size | Price | Stock | Qty |
---|---|---|---|
250mg |
|
||
500mg |
|
||
1g |
|
||
2g |
|
||
5g |
|
||
10g |
|
||
25g |
|
||
Other Sizes |
|
Purity: ≥98%
Amiodarone (NSC 85442) is an antiarrhythmic agent that acts as a sodium/potassium-ATPase inhibitor and an autophagy activator that is used to treat various types of cardiac dysrhythmias. Amiodarone HCl has shown a non-competitive inhibition of the chronotropic effect of isoproterenol with a pD’ value of ~4.17. In addition, Amiodarone HCl has been reported to inhibit the norepinephrine-induced contractions in a non-competitive type with a pD’ value of about 4.06.
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
The Cmax of amiodarone in the plasma is achieved about 3 to 7 hours after administration. The general time to onset of action of amiodarone after one dose given by the intravenous route is between 1 and 30 minutes, with therapeutic effects lasting from 1-3 hours. Steady-state concentrations of amiodarone in the plasma ranges between 0.4 to 11.99 μg/ml; it is advisable that steady-state levels are generally maintained between 1.0 and 2.5 μg/ml in patients with arrhythmias. Interestingly, its onset of action may sometimes begin after 2 to 3 days, but frequently takes 1 to 3 weeks, despite the administration of higher loading doses. The bioavailability of amiodarone varies in clinical studies, averaging between 35 and 65%. Effect of food In healthy subjects who were given a single 600-mg dose immediately after consuming a meal high in fat, the AUC of amiodarone increased by 2.3 and the Cmax by 3.8 times. Food also enhances absorption, reducing the Tmax by about 37%. Amiodarone is eliminated primarily by hepatic metabolism and biliary excretion. A small amount of desethylamiodarone (DEA) is found in the urine. In a pharmacokinetic study of 3 healthy individuals and 3 patients diagnosed with supraventricular tachycardia (SVT), the volume of distribution was found to be 9.26-17.17 L/kg in healthy volunteers and 6.88-21.05 L/kg in the SVT patients. Prescribing information mentions that the volume of distribution of amiodarone varies greatly, with a mean distribution of approximately 60 L/kg. It accumulates throughout the body, especially in adipose tissue and highly vascular organs including the lung, liver, and spleen. One major metabolite of amiodarone, desethylamiodarone (DEA), is found in even higher proportions in the same tissues as amiodarone. The clearance of amiodarone after intravenous administration in patients with ventricular fibrillation and ventricular tachycardia ranged from 220 to 440 ml/hr/kg in one clinically study. Another study determined that the total body clearance of amiodarone varies from 0.10 to 0.77 L/min after one intravenous dose. Renal impairment does not appear to affect the clearance of amiodarone, but hepatic impairment may reduce clearance. Patients with liver cirrhosis exhibited significantly lower Cmax and mean amiodarone concentration for DEA, but not for amiodarone. Severe left ventricular dysfunction prolongs the half-life of DEA. A note on monitoring No guidelines have been developed for adjusting the dose of amiodarone in renal, hepatic, or cardiac abnormalities. In patients on chronic amiodarone treatment, close clinical monitoring is advisable, especially for elderly patients and those with severe left ventricular dysfunction. Metabolism / Metabolites This drug is metabolized to the main metabolite desethylamiodarone (DEA) by the CYP3A4 and CYP2C8 enzymes. The CYP3A4 enzyme is found in the liver and intestines. A hydroxyl metabolite of DEA has been identified in mammals, but its clinical significance is unknown. Amiodarone has known human metabolites that include N-Desethylamiodarone. Amiodarone is extensively metabolized in the liver via CYP2C8 (under 1% unchanged in urine), and can effect the metabolism of numerous other drugs. The major metabolite of amiodarone is desethylamiodarone (DEA), which also has antiarrhythmic properties. The metabolism of amiodarone is inhibited by grapefruit juice, leading to elevated serum levels of amiodarone. Route of Elimination: Amiodarone is eliminated primarily by hepatic metabolism and biliary excretion and there is negligible excretion of amiodarone or DEA in urine. Half Life: 58 days (range 15-142 days) Biological Half-Life The terminal half-life of amiodarone varies according to the patient, but is long nonetheless, and ranges from about 9-100 days. The half-life duration varies according to different sources. According to the prescribing information for amiodarone, the average apparent plasma terminal elimination half-life of amiodarone is of 58 days (ranging from 15 to 142 days). The terminal half-life range was between 14 to 75 days for the active metabolite, (DEA). The plasma half-life of amiodarone after one dose ranges from 3.2 to 79.7 hours, according to one source. |
---|---|
Toxicity/Toxicokinetics |
Toxicity Summary
The antiarrhythmic effect of amiodarone may be due to at least two major actions. It prolongs the myocardial cell-action potential (phase 3) duration and refractory period and acts as a noncompetitive a- and b-adrenergic inhibitor. Toxicity Data Intravenous, mouse: LD50 = 178 mg/kg. |
References | |
Additional Infomation |
Pharmacodynamics
After intravenous administration, amiodarone acts to relax smooth muscles that line vascular walls, decreases peripheral vascular resistance (afterload), and increases the cardiac index by a small amount. Administration by this route also decreases cardiac conduction, preventing and treating arrhythmias. When it is given orally, however, amiodarone does not lead to significant changes in the left ventricular ejection fraction. Similar to other anti-arrhythmic agents, controlled clinical trials do not confirm that oral amiodarone increases survival. Amiodarone prolongs the QRS duration and QT interval. In addition, a decreased SA (sinoatrial) node automaticity occurs with a decrease in AV node conduction velocity. Ectopic pacemaker automaticity is also inhibited. Thyrotoxicosis or hypothyroidism may also result from the administration of amiodarone, which contains high levels of iodine, and interferes with normal thyroid function. |
Molecular Formula |
C25H29I2NO3
|
---|---|
Molecular Weight |
645.31
|
Exact Mass |
645.024
|
CAS # |
1951-25-3
|
Related CAS # |
Amiodarone-d10 hydrochloride;1261393-77-4;Amiodarone hydrochloride;19774-82-4;Amiodarone-d4 hydrochloride;1216715-80-8
|
PubChem CID |
2157
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.58 g/cm3
|
Boiling Point |
635.1ºC at 760 mmHg
|
Melting Point |
156ºC
|
Flash Point |
337.9ºC
|
Vapour Pressure |
4.95E-16mmHg at 25°C
|
LogP |
6.936
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
4
|
Rotatable Bond Count |
11
|
Heavy Atom Count |
31
|
Complexity |
547
|
Defined Atom Stereocenter Count |
0
|
SMILES |
CCCCC1=C(C(C2=CC(I)=C(OCCN(CC)CC)C(I)=C2)=O)C3=C(O1)C=CC=C3
|
InChi Key |
IYIKLHRQXLHMJQ-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C25H29I2NO3/c1-4-7-11-22-23(18-10-8-9-12-21(18)31-22)24(29)17-15-19(26)25(20(27)16-17)30-14-13-28(5-2)6-3/h8-10,12,15-16H,4-7,11,13-14H2,1-3H3
|
Chemical Name |
(2-butyl-1-benzofuran-3-yl)-[4-[2-(diethylamino)ethoxy]-3,5-diiodophenyl]methanone
|
Synonyms |
Amiodaronum AratacCordarone Amiodarona Nexterone
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.5496 mL | 7.7482 mL | 15.4964 mL | |
5 mM | 0.3099 mL | 1.5496 mL | 3.0993 mL | |
10 mM | 0.1550 mL | 0.7748 mL | 1.5496 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT00420953 | COMPLETED | Drug: Cordarone | Healthy | Prism Pharmaceuticals | 2006-12-18 | Phase 1 |
NCT03720210 | TERMINATEDWITH RESULTS | Device: RFA | Amiodarone-Induced Thyrotoxicosis | Mayo Clinic | 2018-11-19 | Not Applicable |
NCT04997980 | COMPLETED | Drug: Amiodarone Injection | Out-Of-Hospital Cardiac Arrest | Fondazione IRCCS Policlinico San Matteo di Pavia | 2015-01-01 | |
NCT04594746 | RECRUITING | Drug: Amiodarone Hydrochloride Drug: Placebo |
Atrial Fibrillation | University of Calgary | 2022-02-03 | Phase 4 |
NCT02668432 | TERMINATEDWITH RESULTS | Drug: Amiodarone | New Onset Atrial Fibrillation Septic Shock Severe Sepsis |
The University of Texas Health Science Center at San Antonio | 2016-05 | Phase 4 |