yingweiwo

Ampicillin [D-(-)-α-Aminobenzylpenicillin)]

Alias: Aminobenzylpenicillin; Ampicillin acid; Principen; Amcill;
Cat No.:V5324 Purity: ≥98%
Ampicillin [D-(-)-α-Aminobenzylpenicillin)] is a potent broad-spectrum beta-lactam antibiotic widely used to prevent and treat a number of bacterial infections, such as respiratory tract infections, urinary tract infections, meningitis, salmonellosis, and endocarditis.
Ampicillin [D-(-)-α-Aminobenzylpenicillin)]
Ampicillin [D-(-)-α-Aminobenzylpenicillin)] Chemical Structure CAS No.: 69-53-4
Product category: Bacterial
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1g
2g
5g
10g
25g
Other Sizes

Other Forms of Ampicillin [D-(-)-α-Aminobenzylpenicillin)]:

  • Ampicillin sodium
  • Ampicillin Trihydrate [D-(-)-α-Aminobenzylpenicillin]
  • Ampicillin-d5 (Ampicillin d5)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Ampicillin [D-(-)-α-Aminobenzylpenicillin)] is a potent broad-spectrum beta-lactam antibiotic widely used to prevent and treat a number of bacterial infections, such as respiratory tract infections, urinary tract infections, meningitis, salmonellosis, and endocarditis. It may also be used to prevent group B streptococcal infection in newborns. It is used by mouth, by injection into a muscle, or intravenously. Like all antibiotics, it is not useful for the treatment of viral infections.

Biological Activity I Assay Protocols (From Reference)
Targets
β-lactam
ln Vitro
Ampicillin has a dose-dependent effect on swine-derived E. Coli growth inhibition. Ampicillin's effective inhibitory concentration was 2.5 uG/mL[1].
ln Vivo
When hemorrhagic enteritis strikes an 11-week-old pig, ampicillin works wonders to relieve the symptoms[1]. Maximum concentrations of ampicillin are twice as high in bile as they are in serum. After an oral dosage, the peak concentration of ampicillin in portal blood is twice as high as in peripheral blood[2]. Neuroprotection against brain damage caused by ischemia-reperfusion is offered by ampicillin. Ampicillin raises the level of GLT-1 expression while decreasing MMP activity. After global forebrain ischemia, pretreatment with ampicillin dramatically lowers medial hippocampal cell death[3].
Animal Protocol
Mice: Normal saline is used to dissolve ampicillin. After receiving halothane anesthesia, male C57BL/6 mice had their common carotid arteries blocked bilaterally for 40 minutes. Penicillin G (6,000 U/kg or 20,000 U/kg, intraperitoneally [i.p.]) or ampicillin (200 mg/kg) was given intraperitoneally (i.p.) every day for five days prior to transient forebrain ischemia. The same volume and timing of saline administration were used for the control animals[3].
References

[1]. Effect of Ampicillin on E. Coli of Swine Origin. Can J Comp Med Vet Sci. 1963 Sep;27(9):223-7.

[2]. Ampicillin in portal and peripheral blood and bile after oral administration of ampicillin andpivampicillin. Eur J Clin Pharmacol. 1974;7(2):133-5.

[3]. The neuroprotective mechanism of ampicillin in a mouse model of transient forebrain ischemia. Korean J Physiol Pharmacol. 2016 Mar;20(2):185-92.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C16H19N3O4S
Molecular Weight
349.40476
Exact Mass
349.11
Elemental Analysis
C, 55.00; H, 5.48; N, 12.03; O, 18.32; S, 9.18
CAS #
69-53-4
Related CAS #
Ampicillin sodium;69-52-3;Ampicillin trihydrate;7177-48-2;Ampicillin-d5;1426173-65-0
Appearance
Solid powder
SMILES
CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=CC=C3)N)C(=O)O)C
InChi Key
AVKUERGKIZMTKX-UHFFFAOYSA-N
InChi Code
InChI=1S/C16H19N3O4S/c1-16(2)11(15(22)23)19-13(21)10(14(19)24-16)18-12(20)9(17)8-6-4-3-5-7-8/h3-7,9-11,14H,17H2,1-2H3,(H,18,20)(H,22,23)
Chemical Name
(2S,5R,6R)-6-[[(2R)-2-amino-2-phenylacetyl]amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid
Synonyms
Aminobenzylpenicillin; Ampicillin acid; Principen; Amcill;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
0.1 M NaOH : ~25 mg/mL (~71.55 mM)
H2O : ~4.9 mg/mL (~14.02 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.8620 mL 14.3102 mL 28.6205 mL
5 mM 0.5724 mL 2.8620 mL 5.7241 mL
10 mM 0.2862 mL 1.4310 mL 2.8620 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT00879190 COMPLETEDWITH RESULTS Drug: Unasyn
Drug: Ampicillin/gentamicin
Chorioamnionitis Stanford University 2009-05 Phase 2
Phase 3
NCT01433757 COMPLETED Drug: Ampicillin
Drug: Sugar pill
DYT-1
Dystonia
University of Florida 2011-09 Phase 1
NCT02427932 COMPLETED Drug: Ampicillin
Drug: Ampicillin and Gentamicin
Drug: Gentamicin
Drug Metabolism During Pregnancy Stanford University 2015-05
NCT06368102 RECRUITING Drug: Ampicillin Surgical Site Infection Uji Takeda Hospital 2024-05-02 Phase 4
NCT01138852 COMPLETED Drug: Ampicillin-sulbactam
Drug: Cefuroxime
Surgical Site Infections Attikon Hospital 2004-07 Phase 4
Biological Data
  • Effect of the ampicillin pretreatment (200 mg/kg for 5 days) on delayed neuronal death in the hippocampus of mice after transient global forebrain ischemia. (A) Representative images of cresyl violet-stained brain coronal sections 3 days after transient forebrain ischemia or sham manipulation. Daily treatment with ampicillin protected the medial CA1 pyramidal cells of the hippocampus 3 days after forebrain ischemia. The scale bars in e and f indicate 200 µm and 20 µm, respectively. (B) Quantitative analysis of the neuronal damage in the saline- and ampicillin-treated groups. *p<0.05.[3]. The neuroprotective mechanism of ampicillin in a mouse model of transient forebrain ischemia. Korean J Physiol Pharmacol. 2016 Mar;20(2):185-92.
  • Effect of the penicillin G sodium salt pretreatment (6,000, 20,000 U/kg, for 5 days) on delayed hippocampal neuronal death after transient global forebrain ischemia in mice. (A) Representative images of cresyl violet-stained brain coronal sections 3 days after transient forebrain ischemia or sham manipulation. The penicillin G sodium salt did not protect the medial CA1 pyramidal cells of the hippocampus 3 days after ischemia/reperfusion. The scale bars in e and f indicate 200 µm and 20 µm, respectively. (B) Quantitative analysis of the neuronal damage in the saline- and ampicillin-treated groups. There was no significant difference in neuronal damage between the saline- and penicillin G-treated groups.[3]. The neuroprotective mechanism of ampicillin in a mouse model of transient forebrain ischemia. Korean J Physiol Pharmacol. 2016 Mar;20(2):185-92.
  • Expression level of the GLT-1 protein in the hippocampus. (A) Representative image of a western blot from the control and ampicillin-treated mice. In this study, normal mice were intraperitoneally administered ampicillin or saline for 5 days. (B) Quantitative data of GLT-1 expression in the hippocampus. The data are presented as the mean±SEM. *p<0.05.[3]. The neuroprotective mechanism of ampicillin in a mouse model of transient forebrain ischemia. Korean J Physiol Pharmacol. 2016 Mar;20(2):185-92.
Contact Us