yingweiwo

Arbaclofen placarbil (XP-19986)

Alias: XP19986 XP-19986 XP 19986 Arbaclofen placarbil.
Cat No.:V11546 Purity: ≥98%
Arbaclofen placarbil (XP19986),a prodrug of R-baclofen,is novel and potent GABA(B)-selective receptor agonist with more favorable pharmacokinetic profile than baclofen.
Arbaclofen placarbil (XP-19986)
Arbaclofen placarbil (XP-19986) Chemical Structure CAS No.: 847353-30-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g

Other Forms of Arbaclofen placarbil (XP-19986):

  • (R)-baclofen (STX209)
  • Arbaclofen hydrochloride (XP-19986)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Arbaclofen placarbil (XP19986), a prodrug of R-baclofen, is novel and potent GABA(B)-selective receptor agonist with more favorable pharmacokinetic profile than baclofen. Arbaclofen placarbil is a novel R- improved absorption, distribution, metabolism, and elimination properties compared with R-baclofen. Arbaclofen placarbil decreases postprandial reflux in patients with gastroesophageal reflux disease.

Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Unlike baclofen, absorption of R-baclofen(arbaclofen) is not limited to the upper small intestine. The ability of arbaclofen to be absorbed throughout the gastrointestinal tract allowed for the development of the sustained release formulation, arbaclofen placarbil (AP). In one study of AP absorption in 10 healthy volunteers, one 20mg oral dose of AP, in the presence of food, resulted in a Tmax of 5.05h. The oral bioavailability of R-baclofen in rats when AP was dosed at 10mg/kg was 44 ± 12%, and when dosed at 1mg/kg, oral bioavailability was 68 ± 6%. In monkeys and dogs, the oral bioavailability of R-baclofen when AP was orally dosed was high: 94 ± 16%, and 92 ± 7%, respectively. In comparison, when oral R-balofen was dosed oral bioavailability was 39 ± 21% in monkeys and 49 ± 20% in dogs. Colonic absorption studies measuring R-baclofen bioavailability post intracolonic dosing in rats and monkeys, have revealed low bioavailability with the administration of R-baclofen (7 ± 3% and 3 ± 2%, respectively), and significantly higher R-baclofen bioavailability with intracolonic dosing of AP suspension ( 37 ± 9% and 37 ± 15%, in rats and monkeys respectively). Intracolonic dosing of AP suspension also resulted in high biolavailability of R-baclofen in dogs (77 ± 23%). Absorption throughout the intestine is both passive and active and occurs via the monocarboxylate type 1 transporter.
84-88% renal elimination as R-baclofen. Less than 1% fecal elimination. (2)
Radioactive labeling has shown AP to be widely distributed throughout the body. Tissue distribution occurs mostly to the kidneys and liver.
Blood clearance of an IV bolus of AR in rats resulted in a total blood clearance of 15.81 ± 10.2 L/h/kg in rats. In comparison, blood clearance of an IV bolus of R-baclofen in rats, monkeys, and dogs, resulted in half lives ranging from 1.6-3.4hours, with total blood clearances reported to be 0.51± 0.13L/h/kg in rats, 0.31±0.11L/h/kg in monkeys, and 0.24L±0.01L/h/kg in dogs. (2) In studied utilizing radioactive tracers attached to R-baclofen, 97% of radioactivity was recovered in the urine.
Metabolism / Metabolites
In experimental studies using human liver S9 Arbaclofen placarbil was not shown to be a substrate for CYP1A2, CYP2C19, CYP2D6, CYP2E1, and CYP3A4. Arbaclofen placarbil, the acyloxyalkyl carbamate prodrug of R-arbaclofen, is believed to undergo hydrolysis by the esterase enzyme human carboxylesterase-2 into the parent amine, R-baclfen. Carbon dioxide, isobutyric acid, isobutyraldehyde, are also expected to be produced in equimolar quantities. The productions of isobutyric acid has been confirmed in vitro untilizing mass spectrometry and gas chromatography.
Biological Half-Life
IV bolus administration of AP to rats showed that AP was converted to R-baclofen with a half life of 6 minutes.
References
: Erickson CA, Veenstra-Vanderweele JM, Melmed RD, McCracken JT, Ginsberg LD, Sikich L, Scahill L, Cherubini M, Zarevics P, Walton-Bowen K, Carpenter RL, Bear MF, Wang PP, King BH. STX209 (arbaclofen) for autism spectrum disorders: an 8-week open-label study. J Autism Dev Disord. 2014 Apr;44(4):958-64. doi: 10.1007/s10803-013-1963-z. PubMed PMID: 24272415.
Additional Infomation
Arbaclofen Placerbil is a prodrug of Arbaclofen, which is a selective gamma-amino-butyric acid type B receptor agonist and the R-enantiomer of baclofen. It was discovered, and has been patented by XenoPort as a new chemical entity with an improved pharmacokinetic profile compared to baclofen, which allows for sustained release properties. Arbaclofen Placerbil was believed to have therapeutic potential in treating gastroesophogeal reflux disease (GERD) and plasticity; however due to discouraging clinical trial results, the drug was abandoned by XenoPort in 2011 for the treatment of GERD. On May 20th, 2013, XenoPort announced plans to terminate the development of Arbaclofen Placerbil for the treatment of multiple sclerosis.
Drug Indication
Investigated for the treatment of spasticity in multiple sclerosis, acute back spasms, and GERD.
Mechanism of Action
R-baclofen is postulated to aid in spasticity by acting as an agonist of the inhibitory gamma aminobutyric acid neurotransmission pathway.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C19H26CLNO6
Molecular Weight
399.8658452034
Exact Mass
399.144
CAS #
847353-30-4
Related CAS #
847353-30-4 (Arbaclofen placarbil); 69308-37-8 (Arbaclofen); 63701-55-3 (Arbaclofen hydrochloride)
PubChem CID
11281011
Appearance
Typically exists as solid at room temperature
Density
1.2±0.1 g/cm3
Boiling Point
545.1±50.0 °C at 760 mmHg
Flash Point
283.5±30.1 °C
Vapour Pressure
0.0±1.5 mmHg at 25°C
Index of Refraction
1.523
LogP
4.39
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
11
Heavy Atom Count
27
Complexity
502
Defined Atom Stereocenter Count
2
SMILES
CC(C)C(OC(=O)C(C)C)OC(=O)NCC(CC(=O)O)C1=CC=C(C=C1)Cl
InChi Key
JXTAALBWJQJLGN-KSSFIOAISA-N
InChi Code
InChI=1S/C19H26ClNO6/c1-11(2)17(24)26-18(12(3)4)27-19(25)21-10-14(9-16(22)23)13-5-7-15(20)8-6-13/h5-8,11-12,14,18H,9-10H2,1-4H3,(H,21,25)(H,22,23)/t14-,18-/m0/s1
Chemical Name
(R)-3-(4-chlorophenyl)-4-((((S)-1-(isobutyryloxy)-2-methylpropoxy)carbonyl)amino)butanoic acid
Synonyms
XP19986 XP-19986 XP 19986 Arbaclofen placarbil.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.5008 mL 12.5041 mL 25.0081 mL
5 mM 0.5002 mL 2.5008 mL 5.0016 mL
10 mM 0.2501 mL 1.2504 mL 2.5008 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us