yingweiwo

AS-HK014

Alias: ASHK014; AS-HK-014; Gingerenone A; ASHK-014; AS-HK014; AS HK014;
Cat No.:V11692 Purity: =99.50%
Gingerenone A is an Nrf2-Gpx4 activator with anti-breast cancer properties.
AS-HK014
AS-HK014 Chemical Structure CAS No.: 128700-97-0
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: =99.50%

Product Description
Gingerenone A is an Nrf2-Gpx4 activator with anti-breast cancer properties. Gingerenone A causes G2/M phase delay in cancer/tumor cells following oxidative stress and senescence. Gingerenone A also reduces ferroptosis in secondary liver injury (SLI) in mice with dextran sodium sulfate (DSS)-induced colitis. Gingerenone A can be extracted from ginger.
Biological Activity I Assay Protocols (From Reference)
Targets
Nrf2-Gpx4
ln Vitro
Gin A diminished the cellular ATP content and decreased the cell viability of the MTS assay in several breast cancer cell lines. It also showed a delayed G2/M response to breast cancer cells (MCF7 and MDA-MB-231). N-acetylcysteine (NAC), an oxidative stress inhibitor, can revert these responses of antiproliferation and G2/M delay. The oxidative stress and senescence responses of Gin A were further validated by increasing reactive oxygen species, mitochondrial superoxide, and β-galactosidase activity, which were reverted by NAC. Gin A also upregulated senescence-associated gene expressions. In addition to oxidative stress, Gin A also induced DNA damage responses by increasing γH2AX level and foci and generating 8-hydroxyl-2'-deoxyguanosine in breast cancer cells, which were reverted by NAC. Therefore, Gin A promotes antiproliferation and senescence of breast cancer cells induced by oxidative stress.[1]
ln Vivo
In this study, we investigated the protective effect of GA on dextran sodium sulfate (DSS)-induced SLI in mice and its mechanism. The SLI was established by adding 4% DSS in the drinking water of mice, and the effects of GA (5, 20 mg/kg, p.o., once a day for 7 days) in hepatic tissues were analyzed. HepG2 cells were induced by lipopolysaccharide (LPS) to detect the effect of GA on ferroptosis and the underlying mechanism. Pathological damage was determined by H&E. Liver parameters (AST and ALT), antioxidant enzyme activities (MDA and SOD), and the level of Fe2+ in the liver were detected by kits. Cytokine levels (TNF-α, IL-1β, and IL-6) and Gpx4 activity in the liver were detected by ELISA. Finally, the activation of nuclear factor erythroid 2-like 2 (Nrf2) was detected to explore the mechanism. The results indicated that GA significantly attenuated DSS-induced hepatic pathological damage, liver parameters, and cytokine levels and increased the antioxidant enzyme activities. Moreover, GA attenuated ferroptosis in DSS-induced liver injury and upregulated Gpx4 expression in DSS-induced mice. Mechanistic experiments revealed that GA activated Nrf2 in mice. Taken together, this study demonstrates that GA can alleviate ferroptosis in SLI in DSS-induced colitis mice, and its protective effects are associated with activating the Nrf2-Gpx4 signaling pathway. [2]
Enzyme Assay
Livers Biochemical Analysis[2]
Briefly, about 40 mg of frozen liver was taken and homogenized by adding 300 μL of PBS, and then, the supernatant was extracted. Then, supernatants were used to determinate the levels of ALT and AST, following the manufacturer’s protocol.
Detection of Cytokines and Oxidative Stress[2]
The following assays were performed using the above extracted liver protein supernatant. The levels of hepatic TNF-α (EK282/4), IL-1β (EK201B), and IL-6 (EK206/3) in the liver were determined according to the instructions of the ELISA kit. The activities of hepatic GSH (A006-1-2) and MDA (A003-1-2) were determined by a kit.
Detection of Fe2+ Release Assay and GPX4 Enzymatic Activity[2]
The following assays were performed using the above extracted liver protein supernatant. The supernatants were used to determinate the hepatic Fe2+ release (TC1015) level following the manufacturer’s protocol and the GPX4 enzymatic activity (MM-44846M2) following the manufacturer’s protocol.
Cell Assay
Cell Viability[1]
Viability was assessed using an ATP kit, MTS cell proliferation assay, and trypan blue reagent based on the user manual’s instruction.
Cell Cycle Detection[1]
To stain DNA, 7-Aminoactinomycin D (7AAD) (1 μg/mL, 30 min, 37 °C) was used in order to determine cell cycle phases. The 7AAD-stained cells were resuspended in PBS to perform flow cytometer. Cell cycle phases were analyzed by FlowJo software version 10.
Animal Protocol
SPF Male C57 mice were purchased from the Experimental Animal Service Center of Guangzhou University of Chinese Medicine (SCXK 2020-0051). The mice were housed at a temperature of 20–24 °C, relative humidity of 55 ± 10%, and a light/dark cycle of 12–12 h. All animal care and experimental studies were approved by the Animal Ethics Committee of Guangzhou University of Chinese Medicine and followed its guidelines.[2]
As described in our previous publication, the SLI mouse model was treated by 7 days of dextran sodium sulfate (DSS; MW, 36 000–50 000) free drinking. As shown in Figure 1B, mice were randomly grouped into an average of 10 mice per group. The groups were set as the control group (Ctrl), 4% DSS group, 4% DSS+5-ASA (50 mg/kg) group, 4% DSS+GA (5 mg/kg) group (GAL), and 4% DSS+GA (20 mg/kg) group (GAH). During DSS treatment, mice in the control were given distilled water, and the rest of the groups were given the corresponding drugs; body weights were assessed daily. The livers were removed, and a portion was cut and soaked in 4% paraformaldehyde for pathology; the remainder was frozen at −80 °C.[2]
References

[1]. Gingerenone A Induces Antiproliferation and Senescence of Breast Cancer Cells. Antioxidants (Basel). 2022 Mar 19;11(3):587.

[2]. Gingerenone A Alleviates Ferroptosis in Secondary Liver Injury in Colitis Mice via Activating Nrf2-Gpx4 Signaling Pathway. J Agric Food Chem. 2022 Oct 5;70(39):12525-12534.

Additional Infomation
Gingerenone A is a diarylheptanoid.
Gingerenone A has been reported in Zingiber officinale with data available.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C21H24O5
Molecular Weight
356.41226
Exact Mass
356.162
Elemental Analysis
C, 70.77; H, 6.79; O, 22.44
CAS #
128700-97-0
PubChem CID
5281775
Appearance
Typically exists as light yellow to yellow ointment at room temperature
Density
1.183g/cm3
Boiling Point
571.3ºC at 760mmHg
Flash Point
200.3ºC
Vapour Pressure
1.19E-13mmHg at 25°C
Index of Refraction
1.583
LogP
3.805
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
9
Heavy Atom Count
26
Complexity
450
Defined Atom Stereocenter Count
0
SMILES
O=C(CCC1C=CC(O)=C(OC)C=1)/C=C/CCC1C=CC(O)=C(OC)C=1
InChi Key
FWDXZNKYDTXGOT-GQCTYLIASA-N
InChi Code
InChI=1S/C21H24O5/c1-25-20-13-15(8-11-18(20)23)5-3-4-6-17(22)10-7-16-9-12-19(24)21(14-16)26-2/h4,6,8-9,11-14,23-24H,3,5,7,10H2,1-2H3/b6-4+
Chemical Name
(E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hept-4-en-3-one
Synonyms
ASHK014; AS-HK-014; Gingerenone A; ASHK-014; AS-HK014; AS HK014;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 100 mg/mL (280.6 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.8058 mL 14.0288 mL 28.0576 mL
5 mM 0.5612 mL 2.8058 mL 5.6115 mL
10 mM 0.2806 mL 1.4029 mL 2.8058 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us