Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
50mg |
|
||
Other Sizes |
|
Atosiban (RW22164; Tractocile; RWJ-22164) is a novel and potent peptide-based oxytocin and vasopressin antagonist with the potential to be used for spontaneous preterm labor. It is a nonapeptide, desamino-oxytocin analogue, and a competitive vasopressin/oxytocin receptor antagonist (VOTra). Atosiban inhibits the oxytocin-mediated release of inositol trisphosphate from the myometrial cell membrane.
ln Vitro |
Atosiban prevents the myometrium from releasing IP3 through oxytocin. Both the intracellular calcium released from myometrial cells' sacroplasmic reticulum and the external Ca2+ influx through voltage-gated channels are decreased. Furthermore, atosiban can prevent decidua from releasing PGE and PGF when oxytocin is present [1].
|
---|---|
ln Vivo |
Atoposiban influences the physiological effects of arginine vasopressin on the fetal-maternal cardiovascular and renal systems. The posterior pituitary hormones oxytocin and arginine vasopressin differ in structure by just two amino acids. A trial using atosiban for one hour did not result in any changes to the cardiovascular systems of the mother or the fetus in late-gestation sheep [1]. In the parabrachial nucleus of mice, atosiban inhibits the activation of neurons that express the oxytocin receptor [2].
|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
In women receiving 300 μg/min by infusion for 6-12 h, average steady state concentrations of 442 ng/mL were reached within 1 h. Steady state concentrations increase proportionally to dosage. Small amounts of atosiban are found in the urine with 50 times the amount appearing as the large fragment metabolite (des-(Orn⁸, Gly⁹-NH2)-[Mpa¹, D-Tyr(Et)², Thr⁴]-oxytocin. The amount of drug excreted in the feces is not known. Atosiban has a mean volume of distribution of 41.8 L. Atosiban crosses the placenta and, at a dose of 300 μg/min, was found to have a 0.12 maternal/fetal concentration ratio. Atosiban has a mean clearance rate of 41.8 L/h. Metabolism / Metabolites There are two metabolites of atosiban created through the cleavage of the peptide bond between ornithine and proline which is thought to be facilitated by prior cleavage of the disulfide bridge. The larger fragment remains active as an antagonist of oxytocin receptors but is 10 times less potent than the parent molecule. At a dosage of 300 μg/min the ratio of parent molecule to the main metabolite was observed to be 1.4 at the second hour and 2.8 at the end of infusion. Biological Half-Life Atosiban does not conform to either 1-compartment or 2-compartment kinetics. It has been determined to have an initial half life (tα) of 0.21 h and a terminal half life (tβ) of 1.7 h. |
Toxicity/Toxicokinetics |
Protein Binding
Atosiban is 46-48% bound to plasma proteins in pregnant women. It is not known to partition into red blood cells. Differences in the free fraction of drug between maternal and fetal compartments are unknown. |
References |
[1]. Sanu O, et al. Critical appraisal and clinical utility of atosiban in the management of preterm labor. Ther Clin Risk Manag. 2010 Apr 26;6:191-9.
[2]. Philip J Ryan, et al. Oxytocin-receptor-expressing Neurons in the Parabrachial Nucleus Regulate Fluid Intake. Nat Neurosci. 2017 Dec;20(12):1722-1733. |
Additional Infomation |
Atosiban is an oligopeptide.
Atosiban is an inhibitor of the hormones oxytocin and vasopressin. It is used intravenously to halt premature labor. Although initial studies suggested it could be used as a nasal spray and hence would not require hospital admission, it is not used in that form. Atobisan was developed by the Swedish company Ferring Pharmaceuticals. It was first reported in the literature in 1985. Atosiban is licensed in proprietary and generic forms for the delay of imminent pre-term birth in pregnant adult women. Drug Indication Atosiban is indicated for use in delaying imminent pre-term birth in pregnant adult women with: - regular uterine contractions of at least 30 s duration at a rate of at least 4 per 30 min - a cervical dilation of 1-3cm (0-3cm for nulliparas) and effacement of at least 50% - a gestational age of 24-33 weeks - a normal fetal heart rate Tractotile is indicated to delay imminent pre-term birth in pregnant adult women with: regular uterine contractions of at least 30 seconds duration at a rate of ⥠4 per 30 minutes; a cervical dilation of 1 to 3 cm (0-3 for nulliparas) and effacement of ⥠50%; a gestational age from 24 until 33 completed weeks; a normal foetal heart rate. Atosiban is indicated to delay imminent pre-term birth in pregnant adult women with: regular uterine contractions of at least 30 seconds' duration at a rate of ⥠4 per 30 minutes; a cervical dilation of 1 to 3 cm (0-3 for nulliparas) and effacement of ⥠50%; a gestational age from 24 until 33 completed weeks; a normal foetal heart rate. Mechanism of Action Atosiban is a synthetic peptide oxytocin antagonist. It resembles oxytocin with has modifications at the 1, 2, 4, and 8 positions. The N-terminus of the cysteine residue is deaminated to form 3-mercaptopropanic acid at position 1, at position 2 L-tyrosine is modified to D-tyrosine with an ethoxy group replacing the phenol , threonine replaces glutamine at postion 4, and ornithine replaces leucine at position 8. It binds to membrane bound oxytocin receptors on the myometrium and prevents oxytocin-stimulated increases in inositol triphosphate production. This ultimately prevents release of stored calcium from the sarcoplasmic reticulum and subsequent opening of voltage gated calcium channels. This shutdown of cytosolic calcium increase prevents contractions of the uterine muscle, reducing the frequency of contractions and inducing uterine quiescence. Atosiban has more recently been found to act as a biased ligand at oxytocin receptors. It acts as an antagonist of Gq coupling, explaining the inhibition of the inositol triphosphate pathway thought to be responsible for the effect on uterine contraction, but acts as an agonist of Gi coupling. This agonism produces a pro-inflammatory effect in the human amnion, activating pro-inflammatory signal tranducer NF-κB. It is thought that this reduces atosiban's effectiveness compared to agents which do not produce inflammation as inflammatory mediators are known to play a role in the induction of labour. Pharmacodynamics Atosiban reduces the frequency of uterine contractions to delay pre-term birth in adult females and induces uterine quiescence. |
Molecular Formula |
C43H67N11O12S2
|
---|---|
Molecular Weight |
994.19
|
Exact Mass |
993.441
|
CAS # |
90779-69-4
|
Related CAS # |
Atosiban acetate;914453-95-5
|
PubChem CID |
5311010
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.3±0.1 g/cm3
|
Boiling Point |
1469.0±65.0 °C at 760 mmHg
|
Flash Point |
842.2±34.3 °C
|
Vapour Pressure |
0.0±0.3 mmHg at 25°C
|
Index of Refraction |
1.549
|
LogP |
-3.41
|
Hydrogen Bond Donor Count |
11
|
Hydrogen Bond Acceptor Count |
15
|
Rotatable Bond Count |
18
|
Heavy Atom Count |
68
|
Complexity |
1770
|
Defined Atom Stereocenter Count |
9
|
SMILES |
CC[C@H](C)[C@H]1C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@@H](CSSCCC(=O)N[C@@H](C(=O)N1)CC2=CC=C(C=C2)OCC)C(=O)N3CCC[C@H]3C(=O)N[C@@H](CCCN)C(=O)NCC(=O)N)CC(=O)N)[C@@H](C)O
|
InChi Key |
VWXRQYYUEIYXCZ-OBIMUBPZSA-N
|
InChi Code |
InChI=1S/C43H67N11O12S2/c1-5-23(3)35-41(63)53-36(24(4)55)42(64)50-29(20-32(45)56)38(60)51-30(43(65)54-17-8-10-31(54)40(62)49-27(9-7-16-44)37(59)47-21-33(46)57)22-68-67-18-15-34(58)48-28(39(61)52-35)19-25-11-13-26(14-12-25)66-6-2/h11-14,23-24,27-31,35-36,55H,5-10,15-22,44H2,1-4H3,(H2,45,56)(H2,46,57)(H,47,59)(H,48,58)(H,49,62)(H,50,64)(H,51,60)(H,52,61)(H,53,63)/t23-,24+,27-,28+,29-,30-,31-,35-,36-/m0/s1
|
Chemical Name |
(2S)-N-[(2S)-5-amino-1-[(2-amino-2-oxoethyl)amino]-1-oxopentan-2-yl]-1-[(4R,7S,10S,13S,16R)-7-(2-amino-2-oxoethyl)-13-[(2S)-butan-2-yl]-16-[(4-ethoxyphenyl)methyl]-10-[(1R)-1-hydroxyethyl]-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carbonyl]pyrrolidine-2-carboxamide
|
Synonyms |
Atosiban RWJ-22164 RW22164 TractocileRWJ22164 RW-22164 TractocileRWJ 22164
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
H2O : ~16.67 mg/mL (~16.77 mM)
DMSO : ≥ 16.67 mg/mL (~16.77 mM) |
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 1.67 mg/mL (1.68 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 16.7 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 1.67 mg/mL (1.68 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 16.7 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 1.67 mg/mL (1.68 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.0058 mL | 5.0292 mL | 10.0584 mL | |
5 mM | 0.2012 mL | 1.0058 mL | 2.0117 mL | |
10 mM | 0.1006 mL | 0.5029 mL | 1.0058 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT05693688 | COMPLETED | Drug: Atosiban | Preterm Birth | Academisch Medisch Centrum - Universiteit van Amsterdam (AMC-UvA) | 2017-12-01 | Phase 4 |
NCT03570294 | COMPLETED | Drug: Atosiban | Premature Birth | Polish Mother Memorial Hospital Research Institute | 2014-02-01 | Not Applicable |
NCT01493440 | COMPLETED | Drug: atosiban | Repeated Implantation Failure | An Sinh Hospital | 2011-03 | Not Applicable |
NCT05382143 | UNKNOWN STATUS | Drug: Atosiban | Endometriosis | Radboud University Medical Center | 2022-02-01 | Phase 2 |
NCT03904745 | UNKNOWN STATUS | Drug: Atosiban | Infertility, Female | Bezmialem Vakif University | 2020-12-21 | Not Applicable |
OxtrPBN activation suppresses fluid but not food intake. a,b, TdTomato expression in PBN of Oxtr Cre/+::Ai14 reporter mice (n = 3; a) and adult expression of mCherry fluorescence in OxtrPBN neurons (b) following injection of AAV-DIO-mCherry in a 9-week-old Oxtr Cre/+ male mouse (n = 7). dl, dorsolateral; el, external lateral; scp, superior cerebellar peduncle. Scale bar represents 100 µm. c, Representative example of electrophysiological activity in an OxtrPBN neuron using cell-attached configuration. We observed increased spiking after application of the Oxtr agonist TGOT (0.2 μM), which was inhibited by coadministration of the Oxtr antagonist atosiban (1 μM; the same neuron) (n = 4 of 4 OxtrPBN neurons). d, Injection of AAV-DIO-hM3Dq:mCherry in OxtrPBN neurons. Gray and black triangles denote loxP and lox2722 sites, respectively. e–i, Acute OxtrPBN activation with CNO revealed no significant change in food intake at baseline or after 24 h of fasting (n = 7 per group; two-way repeated measures (RM) ANOVA; baseline food: interaction F(8,96) = 0.2901, P = 0.9678; 24-h fast: interaction F(8,96) = 1.143, P = 0.3424) (e); decreased water and NaCl consumption following 24-h dehydration in the presence of food (n = 7 per group; two-way RM ANOVA; NaCl: interaction F(8,96) = 12.63, P < 0.0001; water: interaction F(8,96) = 39.75, P < 0.0001) .[2]. Philip J Ryan, et al. Oxytocin-receptor-expressing Neurons in the Parabrachial Nucleus Regulate Fluid Intake. Nat Neurosci. 2017 Dec;20(12):1722-1733. td> |
Oxytocin receptor expression in the parabrachial nucleus (a) Coronal sections 90 µm apart from Oxtr Cre/+ ::Ai14 mouse demonstrating oxytocin receptor (Oxtr) expression in the parabrachial nucleus (PBN) from bregma −5.1 to −5.5; scale bar, 500 µm. (b) Selection of brain images demonstrating robust Oxtr expression; AD, anterodorsal thalamic nucleus; CeA, central nucleus of amygdala; EPd, dorsal endopiriform nucleus; DMV, dorsal motor nucleus of the vagus; DR, dorsal raphé nucleus; GP, globus pallidus; XII, hypoglossal nucleus; MD, mediodorsal thalamic nucleus; NAc, nucleus accumbens; PBN, parabrachial nucleus; PVT, paraventricular thalamic nucleus; pVH, periventricular nucleus of the hypothalamus; SFO, subfornical organ; V, trigeminal motor nucleus; VMH, ventromedial hypothalamic nucleus; scale bar, 500 µm (n = 3). (c) Representative RNAscope® image of PBN demonstrating coexpression of Oxtr mRNA in 80 ± 3% Oxtr:TdTomato-expressing neurons (n = 3). Scale bar, 100 μm; scp, superior cerebellar peduncle. (d) Oxtr agonist, TGOT, increased spiking frequency in OxtrPBN neurons by 3.7 ± 0.55-fold, which was inhibited by Oxtr antagonist, atosiban to 1.6 ± 0.14 fold (n = 4/4 OxtrPBN neurons). Data were normalized to spiking frequency prior to TGOT application.[2]. Philip J Ryan, et al. Oxytocin-receptor-expressing Neurons in the Parabrachial Nucleus Regulate Fluid Intake. Nat Neurosci. 2017 Dec;20(12):1722-1733. td> |