yingweiwo

Atractylenolide I

Alias: Atractylenolide I
Cat No.:V29491 Purity: ≥98%
Atractylenolide I is a sesquiterpene obtained from Atractylodes rhizome root and has a variety of bioactivities like neuroprotection, anti-allergy, anti~inflammatory and anti-cancer.
Atractylenolide I
Atractylenolide I Chemical Structure CAS No.: 73069-13-3
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
50mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Atractylenolide I is a sesquiterpene obtained from Atractylodes rhizome root and has a variety of bioactivities like neuroprotection, anti-allergy, anti~inflammatory and anti-cancer. Atractylenolide I is a TLR4 antagonist and can reduce the phosphorylation levels of JAK2 and STAT3 in A375 cells.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Atractylenolide I (40, 60, 80, 100, 120, 150 μM) must be dosed and timed to dramatically diminish the cell viability of human A375 melanoma cells after 24, 48 and 72 hours of therapy. Atractylenolide I (50 and 100 μM) stimulated A375 cells in a dose-dependent manner after 48 hours of treatment. Atractylenolide I (100 μM) dramatically lowered protein levels of phosphorylated JAK2 and STAT3 in A375 cells, while having no effect on total JAK2 and STAT3. In addition, Atractylenolide I suppresses the mRNA expression of STAT3-repressed genes, including Bcl-xL, MMP-2, and MMP-9[1]. Atractylodes I (up to 100 μM) is not harmful to normal cells. Atractylodes I (25, 50 μM) decreased Ox-LDL-induced TNF-α, IL-6, and NO generation in VSMC. Atractylenolide I (12.5, 25 or 50 μM) significantly lowered MCP-1 levels and prevented Ox-LDL-induced VSMC proliferation and migration. Atractylenolide I (25, 50 μM) suppresses severe staining of foam cells and considerably lowers buffer buildup. Atractylenolide I (50 μM) suppresses Ox-LDL-stimulated p38MAPK and NF-κB p65 expression in VSMC [3]. Atractylenolide I (1, 10, 100 μM) wakes TLR4 signaling through MyD88 in EOC cells to atrophy paclitaxel-induced VEGF and survivin production [4].
ln Vivo
In mice experiencing chronic unpredictable rest during the day (CUMS), atractyloid I (5, 10, or 20 mg/kg, nuchal) reverses body weight loss. Atractyloid I decreases pro-inflammatory cytokine levels in the hippocampal region produced by CUMS, diminishes depression induced by CUMS, and raises the NLRP3 inflammasome in the mouse hippocampal region [2].
References

[1]. The JAK2/STAT3 pathway is involved in the anti-melanoma effects of atractylenolide I. Exp Dermatol. 2018 Feb;27(2):201-204.

[2]. Anti-depressant-like effect of atractylenolide I in a mouse model of depression induced by chronic unpredictable mild stress. Exp Ther Med. 2018 Feb;15(2):1574-1579.

[3]. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro. Exp Cell Res. 2017 Apr 1;353(1):26-34.

[4]. Atractylenolide-I sensitizes human ovarian cancer cells to paclitaxel by blocking activation of TLR4/MyD88-dependent pathway. Sci Rep. 2014 Jan 23;4:3840.

Additional Infomation
Atractylenolide I has been reported in Atractylodes japonica, Atractylodes lancea, and other organisms with data available.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H18O2
Molecular Weight
230.3022
Exact Mass
230.13
CAS #
73069-13-3
PubChem CID
5321018
Appearance
White to light yellow solid powder
Density
1.1±0.1 g/cm3
Boiling Point
405.0±44.0 °C at 760 mmHg
Melting Point
121-123 °C
Flash Point
170.8±25.9 °C
Vapour Pressure
0.0±0.9 mmHg at 25°C
Index of Refraction
1.555
LogP
3.77
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
0
Heavy Atom Count
17
Complexity
481
Defined Atom Stereocenter Count
2
SMILES
CC1=C2C[C@H]3C(=C)CCC[C@@]3(C=C2OC1=O)C
InChi Key
ZTVSGQPHMUYCRS-SWLSCSKDSA-N
InChi Code
InChI=1S/C15H18O2/c1-9-5-4-6-15(3)8-13-11(7-12(9)15)10(2)14(16)17-13/h8,12H,1,4-7H2,2-3H3/t12-,15+/m0/s1
Chemical Name
(4aS,8aS)-3,8a-dimethyl-5-methylidene-4a,6,7,8-tetrahydro-4H-benzo[f][1]benzofuran-2-one
Synonyms
Atractylenolide I
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~434.22 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (10.86 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (10.86 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (10.86 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.3422 mL 21.7108 mL 43.4216 mL
5 mM 0.8684 mL 4.3422 mL 8.6843 mL
10 mM 0.4342 mL 2.1711 mL 4.3422 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us