yingweiwo

Azathioprine sodium

Cat No.:V44701 Purity: ≥98%
Azathioprine (BW 57-322) sodium is an orally bioactive immunosuppressive agent.
Azathioprine sodium
Azathioprine sodium Chemical Structure CAS No.: 55774-33-9
Product category: New3
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Azathioprine sodium:

  • Azathioprine (BW 57-322)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Azathioprine (BW 57-322) sodium is an orally bioactive immunosuppressive agent. Azathioprine can be converted into the bioactive metabolite 6-mercaptopurine (6-MP) in the body, which has myelosuppressive effects and can cause apoptosis.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
In primary rat and human hepatocytes, azathioprine (0-50 μM, 48 hours) sodium causes substantial intracellular GSH depletion at relevant doses [2].
ln Vivo
Azathioprine (oral gavage, 25-400 mg/kg, daily, 10 days) sodium can alter associated parameters such as bone marrow cells, red blood cells, and peripheral blood cytokines in a dose-dependent manner, and can induce apoptosis of female CD-cells. 1 mice and ICR mice [3].
Cell Assay
Cell viability assay [2]
Cell Types: rat hepatocytes, human hepatocytes
Tested Concentrations: 0-50 μM
Incubation Duration: 24-48 hrs (hours)
Experimental Results: It shows that the cell viability and intracellular GSH level of rat hepatocytes diminished at a low concentration of 0.5 μM , but not diminished. In human hepatocytes, cell viability was Dramatically diminished at concentrations below 50 μM, and GSH depletion was clearly noted at concentrations as low as 1 μM.
Animal Protocol
Animal/Disease Models: outbred female CD-1 mice, female ICR mice [3]
Doses: 25-400 mg/kg
Route of Administration: po (oral gavage); every day; 10 days
Experimental Results: Result in red blood cell related parameters and white blood cell related parameters. diminished in a dose-dependent manner. fms-like tyrosine kinase 3 (FLT-3) induced bone marrow cell reduction by 52.4%, 35.4%, 17.9%, 16.1% and 15.2% ligand at concentrations of 40, 60, 80, 100 and 120 mg/kg, respectively ( FL) related cytokines increased. Increased induction of apoptosis.
References
[1]. SoniaChavez-Alvarez, et al. Azathioprine: its uses in dermatology. An Bras Dermatol. 2020 Nov-Dec;95(6):731-736.
[2]. Yue-Ting Wu, et al. Azathioprine hepatotoxicity and the protective effect of liquorice and glycyrrhizic acid. Phytother Res. 2006 Aug;20(8):640-5. doi: 10.1002/ptr.1920.
[3]. Gemma Molyneux, et al. The haemotoxicity of azathioprine in repeat dose studies in the female CD-1 mouse. Int J Exp Pathol. 2008 Apr;89(2):138-58.
Additional Infomation
Azathioprine Sodium is the sodium salt form of azathioprine, a pro-drug of purine analogue with immunosuppressive activity. Azathioprine is converted in vivo to its active metabolite 6-mercaptopurine (6-MP), which substitutes for the normal nucleoside and mistakenly gets incorporated into DNA sequences. This leads to inhibition of DNA, RNA, and protein synthesis. As a result, cell proliferation may be inhibited, particularly in lymphocytes and leukocytes.
An immunosuppressive agent used in combination with cyclophosphamide and hydroxychloroquine in the treatment of rheumatoid arthritis. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), this substance has been listed as a known carcinogen. (Merck Index, 11th ed)
See also: Azathioprine (broader).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C9H7N7O2S.NA+
Exact Mass
299.02
CAS #
55774-33-9
Related CAS #
Azathioprine;446-86-6
PubChem CID
11529527
Appearance
Typically exists as solid at room temperature
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
2
Heavy Atom Count
20
Complexity
354
Defined Atom Stereocenter Count
0
SMILES
CN1C=NC(=C1SC2=NC=NC3=C2N=C[N-]3)[N+](=O)[O-].[Na+]
InChi Key
WISNYKIQFMKSDQ-UHFFFAOYSA-N
InChi Code
InChI=1S/C9H6N7O2S.Na/c1-15-4-14-7(16(17)18)9(15)19-8-5-6(11-2-10-5)12-3-13-8;/h2-4H,1H3;/q-1;+1
Chemical Name
sodium;6-(3-methyl-5-nitroimidazol-4-yl)sulfanylpurin-9-ide
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us