Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
Purity: ≥98%
AZD1208 hydrochloride is a novel, potent, highly selective and orally bioavailable small molecule pan-inhibitor of Pim kinase with IC50 of 0.4 nM, 5 nM, and 1.9 nM for Pim1, Pim2, and Pim3 in cell-free assays, respectively. As a Pan-PIM kinase inhibitor, AZD1208 demonstrated a broad spectrum of antineoplastic activity against various cancers such as breast, prostate, AML, and non-Hodgkin lymphomas. The mechanism of action of AZD1208 is to inhibit the activities of PIM1/2/3 serine/threonine kinases, which may result in the interruption of the G1/S phase of cell cycle transition, therefore causing cell cycle arrest and inducing apoptosis in cells that overexpress PIMs.
ln Vitro |
With GI50 values less than 100 nM, AZD1208 hydrochloride has strong antiproliferative action in the megakaryoblastic leukemia cell line MOLM-16[1]. The proliferation of Ramos cells is inhibited by AZD1208 hydrochloride (10 μM), and at 1 μM, it substantially inhibits PIM kinases in all cells. Apoptosis is induced by AZD1208 hydrochloride, and PIM2 knockdown mostly results in a change in the cell cycle[2]. When combined, AZD1208 hydrochloride and AZD2014 significantly block AKT and 4EBP1 activation, reduce polysome formation, and quickly activate AMPKα, a negative regulator of translation machinery through mTORC1/2 signaling in AML cells[3].
|
||
---|---|---|---|
ln Vivo |
|
||
Animal Protocol |
|
||
References |
|
Molecular Formula |
C21H22CLN3O2S
|
|
---|---|---|
Molecular Weight |
415.936282634735
|
|
Exact Mass |
415.112
|
|
CAS # |
1621866-96-3
|
|
Related CAS # |
AZD1208;1204144-28-4
|
|
PubChem CID |
76962885
|
|
Appearance |
Typically exists as solid at room temperature
|
|
Hydrogen Bond Donor Count |
3
|
|
Hydrogen Bond Acceptor Count |
5
|
|
Rotatable Bond Count |
3
|
|
Heavy Atom Count |
28
|
|
Complexity |
602
|
|
Defined Atom Stereocenter Count |
1
|
|
SMILES |
C1C[C@H](CN(C1)C2=C(C=CC=C2C3=CC=CC=C3)/C=C\4/C(=O)NC(=O)S4)N.Cl
|
|
InChi Key |
KPQHIFXAXSIKOA-SLWUYDEESA-N
|
|
InChi Code |
InChI=1S/C21H21N3O2S.ClH/c22-16-9-5-11-24(13-16)19-15(12-18-20(25)23-21(26)27-18)8-4-10-17(19)14-6-2-1-3-7-14;/h1-4,6-8,10,12,16H,5,9,11,13,22H2,(H,23,25,26);1H/b18-12-;/t16-;/m1./s1
|
|
Chemical Name |
(5Z)-5-[[2-[(3R)-3-aminopiperidin-1-yl]-3-phenylphenyl]methylidene]-1,3-thiazolidine-2,4-dione;hydrochloride
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.4042 mL | 12.0210 mL | 24.0419 mL | |
5 mM | 0.4808 mL | 2.4042 mL | 4.8084 mL | |
10 mM | 0.2404 mL | 1.2021 mL | 2.4042 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
Effect of AZD1208 on cell growth and survival in AML cell lines.Blood.2014 Feb 6;123(6):905-13. td> |
AZD1208 efficacy and pharmacokinetic (PK)-PD analyses in AML xenograft models.Blood.2014 Feb 6;123(6):905-13. td> |
Effect of AZD1208 on downstream signaling in AML cell lines.Blood.2014 Feb 6;123(6):905-13. td> |