yingweiwo

AZD3229 Tosylate

Alias: AZD3229 tosylate; AZD 3229; AZD-3229; AZD-3229 Tosylate; AZD 3229 Tosylate
Cat No.:V4154 Purity: ≥98%
AZD3229 Tosylate, the tosylate salt ofAZD-3229,is a novel, potent, pan-KIT mutantinhibitor with antitumor activity.
AZD3229 Tosylate
AZD3229 Tosylate Chemical Structure CAS No.: 2248003-71-4
Product category: c-Kit
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of AZD3229 Tosylate:

  • AZD3229
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description
AZD3229 Tosylate, the tosylate salt of AZD-3229, is a novel, potent, pan-KIT mutant inhibitor with antitumor activity. It has the potential to treat gastrointestinal stromal tumors and exhibits low nanomolar growth inhibition against a variety of mutant KIT-driven Ba/F3 cell lines (GI50=1–50 nM), with a good margin to KDR-driven effects. Moreover, it suppresses Tel-PDGFRα, Tel-PDGFRβ, and V561D/D842V PDGFR mutants. Additionally, it exhibits strong pharmacodynamic inhibition of the target, good cross-species pharmacokinetics, and activity in multiple in vivo models of GIST. Its kinome selectivity is comparable to that of the best-performing authorized GIST agents, and its selectivity over KDR can be primarily explained by the interaction of water molecules with the protein and ligand in the active site.
Biological Activity I Assay Protocols (From Reference)
Targets
KIT
ln Vitro
AZD3229 is a potent, pan-KIT mutant inhibitor that exhibits strong single-digit nM growth inhibition against a range of Ba/F3 cell lines driven by mutant KIT (GI50=1–50 nM). Across a wide range of cell types, AZD3229 exhibits strong single-digit nM growth inhibition with a good margin against KDR-driven effects. Its kinome selectivity is comparable to the best of the approved GIST agents, and its selectivity over KDR can be primarily explained by the interaction of water molecules with the protein and ligand in the active site[1].
References

[1]. Discovery of N-(4-{[5-Fluoro-7-(2-methoxyethoxy)quinazolin-4-yl]amino}phenyl)-2-[4-(propan-2-yl)-1 H-1,2,3-triazol-1-yl]acetamide (AZD3229), a Potent Pan-KIT Mutant Inhibitor for the Treatment of Gastrointestinal Stromal Tumors. J Med Chem. 2018 Oct 11;61(19):8797-8810.

Additional Infomation
PDGFR alpha/KIT Mutant-specific Inhibitor NB003 is the tosylate salt form of NB003, an orally bioavailable inhibitor of specific mutated forms of platelet-derived growth factor receptor alpha (PDGFR alpha; PDGFRa) and mast/stem cell factor receptor c-Kit (SCFR; CD117), with potential antineoplastic activity. Upon oral administration, PDGFR alpha/KIT mutant-specific inhibitor NB003 specifically targets, binds to and inhibits specific mutant forms of PDGFRa and c-Kit. This results in the inhibition of PDGFRa- and c-Kit-mediated signal transduction pathways and the inhibition of proliferation in tumor cells that express these PDGFRa and c-Kit mutants. PDGFRa and c-Kit, protein tyrosine kinases, are upregulated or mutated in various tumor cell types; they play key roles in the regulation of cellular proliferation and resistance to chemotherapy.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C31H34FN7O6S
Molecular Weight
651.708368778229
Exact Mass
651.23
Elemental Analysis
C, 57.13; H, 5.26; F, 2.92; N, 15.04; O, 14.73; S, 4.92
CAS #
2248003-71-4
Related CAS #
AZD3229;2248003-60-1
PubChem CID
135367697
Appearance
Light yellow to yellow solid powder
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
12
Rotatable Bond Count
11
Heavy Atom Count
46
Complexity
873
Defined Atom Stereocenter Count
0
InChi Key
AWHHAHZPRULJMA-UHFFFAOYSA-N
InChi Code
InChI=1S/C24H26FN7O3.C7H8O3S/c1-15(2)21-12-32(31-30-21)13-22(33)28-16-4-6-17(7-5-16)29-24-23-19(25)10-18(35-9-8-34-3)11-20(23)26-14-27-24;1-6-2-4-7(5-3-6)11(8,9)10/h4-7,10-12,14-15H,8-9,13H2,1-3H3,(H,28,33)(H,26,27,29);2-5H,1H3,(H,8,9,10)
Chemical Name
N-[4-[[5-fluoro-7-(2-methoxyethoxy)quinazolin-4-yl]amino]phenyl]-2-(4-propan-2-yltriazol-1-yl)acetamide;4-methylbenzenesulfonic acid
Synonyms
AZD3229 tosylate; AZD 3229; AZD-3229; AZD-3229 Tosylate; AZD 3229 Tosylate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ≥ 100 mg/mL (~153.4 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.5344 mL 7.6721 mL 15.3442 mL
5 mM 0.3069 mL 1.5344 mL 3.0688 mL
10 mM 0.1534 mL 0.7672 mL 1.5344 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us