Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Toxicity/Toxicokinetics |
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation Limited information indicates that aztreonam produces low levels in milk that are not expected to cause adverse effects in breastfed infants. Occasionally disruption of the infant's gastrointestinal flora, resulting in diarrhea or thrush have been reported with beta-lactams, but these effects have not been adequately evaluated. A task force respiratory experts from Europe, Australia and New Zealand found that inhaled tobramycin is compatible with breastfeeding. Aztreonam is acceptable in nursing mothers. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. |
---|---|
Additional Infomation |
Aztreonam Lysine is a formulation of the synthetic monobactam antibiotic, aztreonam and lysine used in an inhaled form for the treatment of chronic airway infections by Pseudomonas aeruginosa in patients with cystic fibrosis.
See also: Aztreonam (annotation moved to). Drug Indication Cayston is indicated for the suppressive therapy of chronic pulmonary infections due to Pseudomonas aeruginosa in patients with cystic fibrosis (CF) aged 6 years and older. Consideration should be given to official guidance on the appropriate use of antibacterial agents. |
Molecular Formula |
C19H31N7O10S2
|
---|---|
Molecular Weight |
581.620341539383
|
Exact Mass |
581.157
|
CAS # |
827611-49-4
|
Related CAS # |
Aztreonam;78110-38-0
|
PubChem CID |
11204019
|
Appearance |
Typically exists as solid at room temperature
|
LogP |
1.746
|
Hydrogen Bond Donor Count |
7
|
Hydrogen Bond Acceptor Count |
16
|
Rotatable Bond Count |
12
|
Heavy Atom Count |
38
|
Complexity |
914
|
Defined Atom Stereocenter Count |
3
|
SMILES |
CC1C(C(=O)N1S(=O)(=O)O)NC(=O)C(=NOC(C)(C)C(=O)O)C2=CSC(=N2)N.C(CCN)CC(C(=O)O)N
|
InChi Key |
KPPBAEVZLDHCOK-JHBYREIPSA-N
|
InChi Code |
InChI=1S/C13H17N5O8S2.C6H14N2O2/c1-5-7(10(20)18(5)28(23,24)25)16-9(19)8(6-4-27-12(14)15-6)17-26-13(2,3)11(21)22;7-4-2-1-3-5(8)6(9)10/h4-5,7H,1-3H3,(H2,14,15)(H,16,19)(H,21,22)(H,23,24,25);5H,1-4,7-8H2,(H,9,10)/b17-8-;/t5-,7-;5-/m00/s1
|
Chemical Name |
2-[(Z)-[1-(2-amino-1,3-thiazol-4-yl)-2-[[(2S,3S)-2-methyl-4-oxo-1-sulfoazetidin-3-yl]amino]-2-oxoethylidene]amino]oxy-2-methylpropanoic acid;(2S)-2,6-diaminohexanoic acid
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.7193 mL | 8.5967 mL | 17.1934 mL | |
5 mM | 0.3439 mL | 1.7193 mL | 3.4387 mL | |
10 mM | 0.1719 mL | 0.8597 mL | 1.7193 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.