Size | Price | Stock | Qty |
---|---|---|---|
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
Purity: ≥98%
Baricitinib phosphate, the phosphate salt of Baricitinib which is also known as LY3009104 or INCB028050 or trade name Olumiant, is a potent, selective, ATP competitive and orally bioavailable inhibitor of tyrosine-protein kinase JAK1 or JAK2. It is an FDA approved drug for the treatment of rheumatoid arthritis (RA) in the United States. In vitro, it is able to inhibit JAK1 and JAK2 with IC50 values in the low nanomolar range of 5.9 and 5.7 nM, respectively, while it displays low inhibitory activity for JAK3 and moderate activity for TYK2. Baricitinib inhibits intracellular signaling of several proinflammatory cytokines such as IL-6 and IL-23 at concentrations<50 nM. JAK signaling is central to a number of fundamental processes including the generation of RBCs. On Nov 20, 2020, the U.S. Food and Drug Administration also issued an emergency use authorization (EUA) for baricitinib to be used in combination with remdesivir, for the treatment of suspected or laboratory confirmed COVID-19 in hospitalized adults and pediatric patients two years of age or older requiring supplemental oxygen, invasive mechanical ventilation, or extracorporeal membrane oxygenation (ECMO). On June 13, 2022, Olumiant (baricitinib) was approved by FDA to treat adult patients with severe alopecia areata, a disorder that often appears as patchy baldness and affects more than 300,000 people in the U.S. each year. Today’s action marks the first FDA approval of a systemic treatment (i.e. treats the entire body rather than a specific location) for alopecia areata.
Targets |
JAK2 (IC50 = 5.7 nM); JAK1 (IC50 = 5.9 nM); Tyk2 (IC50 = 53nM); JAK3 (IC50 = 560nM)
|
||
---|---|---|---|
ln Vitro |
Baricitinib phosphate (INCB028050 phosphate) is a strong inhibitor of JAK signaling and function in experiments conducted on cells. Baricitinib has IC50 values of 44 nM and 40 nM, respectively, which prevent IL-6-stimulated phosphorylation of the canonical substrate STAT3 (pSTAT3) and the subsequent generation of the chemokine MCP-1 in PBMCs. INCB028050 also suppresses pSTAT3 activated by IL-23 (IC50=20 nM) in isolated naive T-cells. Significantly, at an IC50 value of 50 nM, this inhibition stopped the production of two pathogenic cytokines (IL-17 and IL-22) by Th17 cells, a subset of helper T cells with observable inflammatory and pathogenic characteristics. On the other hand, when evaluated at concentrations up to 10 μM, the structurally similar but ineffective JAK1/2 inhibitors INCB027753 and INCB029843 have no discernible effect in any of these assay systems[1].
|
||
ln Vivo |
Treatment with baricitinib phosphate (INCB028050 phosphate) suppresses the rise in hind paw volumes during the first two weeks of treatment by 50% at a dose of 1 mg/kg and by more than 95% at doses of 3 or 10 mg/kg when compared to the vehicle. It is feasible for animals exhibiting a noticeable improvement in swelling to have >100% inhibition because baseline paw volume measurements are obtained on treatment day 0 in animals with substantial symptoms of disease[1]. When compared to mice given with vehicle control, mice treated with baricitinib (0.7 mg/day) show significantly less inflammation as measured by H&E staining, less CD8 infiltration, and less MHC class I and class II expression. When compared to mice treated with a vehicle control, the number of CD8+NKG2D+ cells, which are important disease effectors in alopecia areata (AA) in humans and animals, is significantly reduced in mice treated with baricitinib[2].
|
||
Enzyme Assay |
Enzyme assays were performed using a homogeneous time-resolved fluorescence assay with recombinant epitope tagged kinase domains (JAK1, 837-1142; JAK2, 828-1132; JAK3, 718-1124; Tyk2, 873-1187) or full-length enzyme (cMET and Chk2) and peptide substrate. Each enzyme reaction was performed with or without test compound (11-point dilution), JAK, cMET, or Chk2 enzyme, 500 nM (100 nM for Chk2) peptide, ATP (at the Km specific for each kinase or 1 mM), and 2.0% DMSO in assay buffer. The calculated IC50 value is the compound concentration required for inhibition of 50% of the fluorescent signal. Additional kinase assays were performed at Cerep using standard conditions at 200 nM. Enzymes tested included: Abl, Akt1, AurA, AurB, CDC2, CDK2, CDK4, CHK2, c-kit, EGFR, EphB4, ERK1, ERK2, FLT-1, HER2, IGF1R, IKKα, IKKβ, JNK1, Lck, MEK1, p38α, p70S6K, PKA, PKCα, Src, and ZAP70[1].
|
||
Cell Assay |
Cellular assays[1]
Human PBMCs were isolated by leukapheresis followed by Ficoll-Hypaque centrifugation. For the determination of IL-6–induced MCP-1 production, PBMCs were plated at 3.3 × 105 cells per well in RPMI 1640 + 10% FCS in the presence or absence of various concentrations of INCB028050. Following preincubation with compound for 10 min at room temperature, cells were stimulated by adding 10 ng/ml human recombinant IL-6 to each well. Cells were incubated for 48 h at 37°C, 5% CO2. Supernatants were harvested and analyzed by ELISA for levels of human MCP-1. The ability of INCB028050 to inhibit IL-6–induced secretion of MCP-1 is reported as the concentration required for 50% inhibition (IC50). Proliferation of Ba/F3-TEL-JAK3 cells was performed over 3 d using Cell-Titer Glo following standard assay conditions. For the determination of IL-23–induced IL-17 and IL-22, PBMCs were maintained in RPMI 1640 medium supplemented with 10% FBS, 2 mM l-glutamine, 100 μg/ml streptomycin, and 100 U/ml penicillin. T cells were activated by culturing with anti-CD3 and anti-CD28 Abs. After 2 d, the cells were washed and recultured with IL-23 (100 ng/ml), IL-2 (10 ng/ml) and various concentrations of INCB028050. Cells were incubated for an additional 4 d at 37°C, then supernatants were collected, and secretion of IL-17 and IL-22 were measured by ELISA. The ability of INCB028050 to inhibit IL-23–induced secretion of IL-17 and IL-22 is reported as the concentration required for 50% inhibition (IC50). Phospho-STAT3 analysis[1] Isolated cells.[1] For analysis of phospho-STAT3 in human PBMCs or PHA-stimulated T cells, cell extracts were prepared after 10−15 min preincubation with different concentrations of INCB028050 and stimulation of cells for 15 min with IL-6 (100 ng/ml), IL-12 (20 ng/ml), or IL-23 (100 ng/ml). The extracts were then analyzed for phosphorylated STAT3 by using a phospho-STAT3 specific ELISA. Whole blood.[1] Blood drawn from rats was collected into heparinized tubes and then aliquoted into microfuge tubes (0.3 ml per sample). In stimulation experiments, INCB028050 at various concentrations was added for 10 min prior to stimulation with human IL-6 (100 ng/ml) for 15 min at 37°C. RBCs were lysed using hypotonic conditions. WBCs were then quickly pelleted and lysed to make total cellular extracts. The extracts were analyzed for phosphorylated STAT3 by using a phospho-STAT3–specific ELISA. Blood from animals that were dosed with INCB028050 was drawn at various times after INCB028050 administration and processed as described above. |
||
Animal Protocol |
|
||
References |
|
||
Additional Infomation |
Inhibiting signal transduction induced by inflammatory cytokines offers a new approach for the treatment of autoimmune diseases such as rheumatoid arthritis. Kinase inhibitors have shown promising oral disease-modifying antirheumatic drug potential with efficacy similar to anti-TNF biologics. Direct and indirect inhibition of the JAKs, with small molecule inhibitors like CP-690,550 and INCB018424 or neutralizing Abs, such as the anti-IL6 receptor Ab tocilizumab, have demonstrated rapid and sustained improvement in clinical measures of disease, consistent with their respective preclinical experiments. Therefore, it is of interest to identify optimized JAK inhibitors with unique profiles to maximize therapeutic opportunities. INCB028050 is a selective orally bioavailable JAK1/JAK2 inhibitor with nanomolar potency against JAK1 (5.9 nM) and JAK2 (5.7 nM). INCB028050 inhibits intracellular signaling of multiple proinflammatory cytokines including IL-6 and IL-23 at concentrations <50 nM. Significant efficacy, as assessed by improvements in clinical, histologic and radiographic signs of disease, was achieved in the rat adjuvant arthritis model with doses of INCB028050 providing partial and/or periodic inhibition of JAK1/JAK2 and no inhibition of JAK3. Diminution of inflammatory Th1 and Th17 associated cytokine mRNA levels was observed in the draining lymph nodes of treated rats. INCB028050 was also effective in multiple murine models of arthritis, with no evidence of suppression of humoral immunity or adverse hematologic effects. These data suggest that fractional inhibition of JAK1 and JAK2 is sufficient for significant activity in autoimmune disease models. Clinical evaluation of INCB028050 in RA is ongoing.[1]
Background: Alopecia areata (AA) is an autoimmune disease resulting in hair loss with devastating psychosocial consequences. Despite its high prevalence, there are no FDA-approved treatments for AA. Prior studies have identified a prominent interferon signature in AA, which signals through JAK molecules.[2] Methods: A patient with AA was enrolled in a clinical trial to examine the efficacy of baricitinib, a JAK1/2 inhibitor, to treat concomitant CANDLE syndrome. In vivo, preclinical studies were conducted using the C3H/HeJ AA mouse model to assess the mechanism of clinical improvement by baricitinib.[2] Findings: The patient exhibited a striking improvement of his AA on baricitinib over several months. In vivo studies using the C3H/HeJ mouse model demonstrated a strong correlation between resolution of the interferon signature and clinical improvement during baricitinib treatment.[2] Interpretation: Baricitinib may be an effective treatment for AA and warrants further investigation in clinical trials.[2] Keywords: Alopecia areata; Autoimmune disease; Autoinflammatory; Baricitinib; CANDLE syndrome; Gene expression profiling; Interferon gamma; JAK inhibitor.[2] |
Molecular Formula |
C16H20N7O6PS
|
---|---|
Molecular Weight |
469.41
|
Exact Mass |
469.093
|
Elemental Analysis |
C, 40.94; H, 4.29; N, 20.89; O, 20.45; P, 6.60; S, 6.83
|
CAS # |
1187595-84-1
|
Related CAS # |
Baricitinib;1187594-09-7
|
PubChem CID |
44231848
|
Appearance |
Typically exists as white to yellow solids at room temperature
|
LogP |
1.185
|
Hydrogen Bond Donor Count |
4
|
Hydrogen Bond Acceptor Count |
11
|
Rotatable Bond Count |
5
|
Heavy Atom Count |
31
|
Complexity |
728
|
Defined Atom Stereocenter Count |
0
|
SMILES |
S(C([H])([H])C([H])([H])[H])(N1C([H])([H])C(C([H])([H])C#N)(C1([H])[H])N1C([H])=C(C2=C3C([H])=C([H])N([H])C3=NC([H])=N2)C([H])=N1)(=O)=O.P(=O)(O[H])(O[H])O[H]
|
InChi Key |
FBPOWTFFUBBKBB-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C16H17N7O2S.H3O4P/c1-2-26(24,25)22-9-16(10-22,4-5-17)23-8-12(7-21-23)14-13-3-6-18-15(13)20-11-19-14;1-5(2,3)4/h3,6-8,11H,2,4,9-10H2,1H3,(H,18,19,20);(H3,1,2,3,4)
|
Chemical Name |
(1-(Ethylsulfonyl)-3-(4-(7H-pyrrolo(2,3-d)pyrimidin-4-yl)-1H-pyrazol-1-yl)azetidin-3-yl)ethanenitrile phosphate
|
Synonyms |
trade name Olumiant; LY3009104 phosphate; LY-3009104; LY 3009104; INCB028050 phosphate; INCB-028050; INCB 028050; Baricitinib phosphate;Baricitinib phosphate; 1187595-84-1; Baricitinib (phosphate); Baricitinib phosphate salt; INCB-28050; XIB47S8NNB;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.08 mg/mL (4.43 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: 2.08 mg/mL (4.43 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.08 mg/mL (4.43 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. Solubility in Formulation 4: 0.5% CMC+0.25% Tween 80:30mg/mL |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.1303 mL | 10.6517 mL | 21.3033 mL | |
5 mM | 0.4261 mL | 2.1303 mL | 4.2607 mL | |
10 mM | 0.2130 mL | 1.0652 mL | 2.1303 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT01398475 | Completed Has Results | Drug: LY3009104 | Chronic Inflammatory Disorder Arthritis, Rheumatoid |
Eli Lilly and Company | July 2011 | Phase 1 |
NCT05452564 | Recruiting | Drug: Baricitinib 2 MG Oral Tablet | Human Immunodeficiency Virus | William Tyor | May 18, 2023 | Phase 2 |
NCT04640168 | Completed Has Results | Drug: Baricitinib Drug: Dexamethasone | Recurrent Glioma Refractory Glioma |
National Institute of Allergy and Infectious Diseases (NIAID) |
December 2, 2020 | Phase 3 |
Cellular activity of INCB028050.J Immunol.2010 May 1;184(9):5298-307. td> |
Anti-inflammatory and DMARD activity of once daily INCB028050 in rats with established disease in the adjuvant arthritis model.J Immunol.2010 May 1;184(9):5298-307. td> |
Suppression of delayed-type hypersensitivity by INCB028050.J Immunol.2010 May 1;184(9):5298-307. td> |
INCB028050 is efficacious and well tolerated independently of effects on humoral immunity.J Immunol.2010 May 1;184(9):5298-307. td> |
INCB028050 improves clinical and histologic signs of disease in the murine CIA model. td> |