Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Batimastat sodium ( BB94 sodium), a synthetic hydroxamate analog and an anticancer drug developed by Laurie Hines of British Biotech, is a broad spectrum inhibitor of matrix metalloprotease (MMP) with potential antitumor activity. It inhibits MMP-1, MMP-2, MMP-9, MMP-7 and MMP-3 with IC50 of 3 nM, 4 nM, 4 nM, 6 nM and 20 nM, respectively. It also inhibits the activitity of other metalloproteases, such as ADAM17. It exhibits antineoplastic and antiangiogenic activity in various tumor models, including ovarian carcinoma xegnografts and human colon tumor.
Targets |
MMP-1 (IC50 = 3 nM); MMP-2 (IC50 = 4 nM); MMP-9 (IC50 = 4 nM); MMP-7 (IC50 = 6 nM); MMP-7 (IC50 = 6 nM)
|
||
---|---|---|---|
ln Vitro |
Batimastat (BB-94) is a strong inhibitor of matrix metalloproteinase that binds in an unusual way. Batimastat has an IC50 of 4 nM for gelatinases A and 10 nM for gelatinases B. Comparable to the results for MMP-1 (3 nM), MMP-8 (10 nM), and MMP-3 (20 nM)[2], the IC50 with the structurally identical collagenase Ht-d is 6 nM. This metalloproteinase inhibitor, Batimastat (BB-94, IC50=230 nM), is based on hydroxamic acid and successfully inhibits CD30 shedding from the cell line Karpas299[3].
|
||
ln Vivo |
In an orthotopic model of human breast cancer, intrathecal treatment of Batimastat (BB-94) significantly inhibits the growth of human ovarian carcinoma xenografts and murine melanoma metastasis while delaying the growth of primary tumors without causing cytotoxicity or altering mRNA levels[2]. Antineoplastic and antiangiogenic properties have been demonstrated by the synthetic matrix metalloproteinase inhibitor batimastat (BB) -94 in a number of tumor types. All animals are alive and well on day 200 after receiving treatment with Batimastat (60 mg/kg ip every other day, for a total of eight injections) and Cisplatin (4 mg/kg iv, every seven days, for a total of three injections), which totally stops the growth and spread of both xenografts[4]. When compared to controls (75%), animals treated with Batimastat (BB-94) had higher survival rates (95.2%) according to Kaplan-Meier analysis of survival (at 48 hours), and these changes are nearly statistically significant (p=0.064)[5]. Four hours after E2 administration—the period at which collagen density is seen to be at its lowest following hormone treatment—matrix density is assessed in animals that have been pretreated with saline or Batimastat (40 mg/kg)[6].
|
||
Enzyme Assay |
In vitro, batimastat IC50s are calculated using enzyme assays against various metalloproteinases.Matrix metalloproteinase enzymes have been implicated in degenerative processes like tumor cell invasion, metastasis, and arthritis. Specific metalloproteinase inhibitors have been used to block tumor cell proliferation. We have examined the interaction of batimastat (BB-94) with a metalloproteinase [atrolysin C (Ht-d), EC 3.4.24.42] active site at 2.0-angstroms resolution (R = 16.8%). The title structure exhibits an unexpected binding geometry, with the thiophene ring deeply inserted into the primary specificity site. This unprecedented binding geometry dramatizes the significance of the cavernous primary specificity site, pointing the way for the design of a new generation of potential antitumor drugs.
|
||
Cell Assay |
The IC50 was determined after incubating the cells for 22 hours at various concentrations of batimastat that had been dissolved in absolute ethanol.
Cell growth assays The cell lines were seeded in 24-well multidishes in growth medium and allowed to adhere for two days. When experiments were initiated (day 0), growth medium containing fulvestrant (0.1 μM), HER ligands (10 ng/ml), gefitinib, CI-1033, TAPI-2, Batimastat (BB94) or GM6001 were added at concentrations indicated in the figure. The control cells were added similar amount of vehicle as the treated cells. Growth medium was replaced on day three, and cell number was determined on day five, using a crystal violet colorimetric assay as previously described. Each experiment was performed in quadruplicate and repeated at least twice. Int J Oncol. 2014 Jul;45(1):393-400. |
||
Animal Protocol |
|
||
References |
|
||
Additional Infomation |
Batimastat is a secondary carboxamide resulting from the formal condensation of the carboxy group of (2S,3R)-5-methyl-3-{[(2S)-1-(methylamino)-1-oxo-3-phenylpropan-2-yl]carbamoyl}-2-[(thiophen-2-ylsulfanyl)methyl]hexanoic acid with the amino group of hydroxylamine. It a broad-spectrum matrix metalloprotease inhibitor. It has a role as a matrix metalloproteinase inhibitor, an antineoplastic agent and an angiogenesis inhibitor. It is a L-phenylalanine derivative, a member of thiophenes, an organic sulfide, a triamide, a hydroxamic acid and a secondary carboxamide.
Batimastat is a synthetic hydroxamate with potential antineoplastic activity. Batimastat binds covalently to the zinc ion in the active site of matrix metalloproteinases (MMPs), thereby inhibiting the action of MMPs, inducing extracellular matrix degradation, and inhibiting angiogenesis, tumor growth and invasion, and metastasis. An anticancer drug that belongs to the family of drugs called angiogenesis inhibitors. Batimastat is a matrix metalloproteinase inhibitor. Matrix metalloproteinases have been implicated in the growth and spread of metastatic tumors. This role was investigated in an orthotopic transplant model of human colon cancer in nude mice using the matrix metalloproteinase inhibitor BB-94 (batimastat). Fragments of human colon carcinoma (1-1.5 mm) were surgically implanted orthotopically on the colon in 40 athymic nu/nu mice. Administration of BB-94 or vehicle (phosphate buffered saline, pH 7.4, containing 0.01% Tween 80) commenced 7 days after tumor implantation (20 animals/group). Animals received 30 mg/kg BB-94 i.p. once daily for the first 60 days and then 3 times weekly. Treatment with BB-94 caused a reduction in the median weight of the primary tumor from 293 mg in the control group to 144 mg in the BB-94 treated group (P < 0.001). BB-94 treatment also reduced the incidence of local and regional invasion, from 12 of 18 mice in the control group (67%) to 7 of 20 mice in the treated group (35%). Six mice in the control group were also found to have metastases in the liver, lung, peritoneum, abdominal wall, or local lymph nodes. Only two mice in the BB-94 group had evidence of metastatic disease, in both cases confined to the abdominal wall. The reduction in tumor progression observed in the BB-94-treated group translated into an improvement in the survival of this group, from a median survival time of 110 days in the control group to a median survival time of 140 days in the treated group (P < 0.01). Treatment with BB-94 was not associated with any obvious toxic effect, and these results suggest that such agents may be effective as adjunctive cancer therapies. The synthetic matrix metalloproteinase inhibitor batimastat was tested for its ability to inhibit growth and metastatic spread of the B16-BL6 murine melanoma in syngeneic C57BL/6N mice. Intraperitoneal administration of batimastat resulted in a significant inhibition in the number of lung colonies produced by B16-BL6 cells injected i.v. The effect of batimastat on spontaneous metastases was examined in mice inoculated in the hind footpad with B16-BL6 melanoma. The primary tumor was removed surgically after 26-28 days. Batimastat was administered twice a day from day 14 to day 28 (pre-surgery) or from day 26 to day 44 (post-surgery). With both protocols, the median number of lung metastases was not significantly affected, but there was a significant reduction in the weight of the metastases. Finally, the effect of batimastat was examined on s.c. growth of B16-BL6 melanoma. Batimastat administered daily, starting at day of tumor transplantation, resulted in a significant growth delay, whereas treatment starting at advanced stage tumor only reduced tumor growth marginally. Our results indicate that a matrix metalloproteinase inhibitor can not only prevent the colonization of secondary organs by B16-BL6 cells but also limit the growth of solid tumors. |
Molecular Formula |
C23H30N3O4S2-.NA+
|
---|---|
Molecular Weight |
499.6218
|
Exact Mass |
499.158
|
CAS # |
130464-84-5
|
Related CAS # |
Batimastat;130370-60-4
|
PubChem CID |
59955182
|
Appearance |
Typically exists as solid at room temperature
|
LogP |
4.378
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
6
|
Rotatable Bond Count |
12
|
Heavy Atom Count |
33
|
Complexity |
621
|
Defined Atom Stereocenter Count |
3
|
SMILES |
[O-]NC([C@@H](CSC1=CC=CS1)[C@@H](CC(C)C)C(N[C@@H](CC2=CC=CC=C2)C(NC)=O)=O)=O.[Na+]
|
InChi Key |
VWABIWQKZWQAKG-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C23H30N3O4S2.Na/c1-15(2)12-17(18(22(28)26-30)14-32-20-10-7-11-31-20)21(27)25-19(23(29)24-3)13-16-8-5-4-6-9-16;/h4-11,15,17-19H,12-14H2,1-3H3,(H3-,24,25,26,27,28,29,30);/q-1;+1
|
Chemical Name |
sodium;N-[1-(methylamino)-1-oxo-3-phenylpropan-2-yl]-2-(2-methylpropyl)-N'-oxido-3-(thiophen-2-ylsulfanylmethyl)butanediamide
|
Synonyms |
Batimastat (sodium salt); BB-94 sodium salt; Batimastat Sodium; 130464-84-5; sodium;(2R,3S)-N-[(2S)-1-(methylamino)-1-oxo-3-phenylpropan-2-yl]-2-(2-methylpropyl)-N'-oxido-3-(thiophen-2-ylsulfanylmethyl)butanediamide; BatimastatSodium; (2S,3R)-N-Hydroxy-N'-[(2S)-1-methylamino-1-oxo-3-phenylpropan-2-yl]-3-(2-methylpropyl)-2-(thiophen-2-ylsulfanylmethyl)butanediamide sodium salt; PD118565
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.0015 mL | 10.0076 mL | 20.0152 mL | |
5 mM | 0.4003 mL | 2.0015 mL | 4.0030 mL | |
10 mM | 0.2002 mL | 1.0008 mL | 2.0015 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
th> |
---|
td> |
td> |