yingweiwo

BAY-1816032

Alias: BAY1816032; BAY-1816032; BAY 1816032
Cat No.:V4173 Purity: ≥98%
BAY-1816032 (BAY1816032) is a novel, potent and oral bioavailable inhibitor ofBUB1 (budding uninhibited by benzimidazoles 1) kinase with anticancer effects.
BAY-1816032
BAY-1816032 Chemical Structure CAS No.: 1891087-61-8
Product category: Serine threonin kinase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

BAY-1816032 (BAY1816032) is a novel, potent and oral bioavailable inhibitor of BUB1 (budding uninhibited by benzimidazoles 1) kinase with anticancer effects. It inhibits BUB1 with an IC50 of 7 nM. BAY 1816032 featuring high potency, long target residence time and good oral bioavailablity. It shows slow dissociation kinetics resulting in a long target residence time of 87 min, and an excellent selectivity on a panel of 395 kinases. Mechanistically BAY 1816032 abrogated nocodazole-induced Thr-120 phosphorylation of the major BUB1 target protein histone H2A in HeLa cells with an IC50 of 29 nanomol/L, induced lagging chromosomes and mitotic delay. Persistent lagging chromosomes and missegregation were observed upon combination with low concentrations of paclitaxel. Single agent BAY 1816032 inhibited proliferation of various tumor cell lines with a median IC50 of 1.4 micromol/L and demonstrated synergy or additivity with paclitaxel or docetaxel in almost all cell lines evaluated (minimal combination index 0.3). In tumor xenograft studies BAY 1816032 only marginally inhibited tumor growth as single agent upon oral administration, however, upon combination with paclitaxel or docetaxel a strong and statistically significant reduction of tumor size as compared to the respective monotherapy was observed. Intratumoral levels of phospho-Thr120 H2A were found to be strongly reduced, and no hints on drug-drug interactions were found. In line with the good tolerability in xenograft studies, no relevant findings from non-GLP 2 weeks toxicological studies in rat and dog were reported. Our findings validate the innovative concept of interference with mitotic checkpoints and justify clinical proof of concept studies evaluating BUB1 inhibitor BAY 1816032 in combination with taxanes in order to enhance their efficacy and potentially overcome resistance.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
With an IC50 of 7 nM and slow dissociation kinetics, BAY-1816032 inhibits BUB1 enzymatic activity. This leads to a great collection of 395 switches with an extended target residence time of 87 minutes. With an IC50 of 29 nM, BAY-1816032 inhibits the Thr-120 phosphorylation of the primary BUB1 target protein histone H2A in HeLa cells, resulting in lagging chromosomes and delayed mitotic divisions. Errors and lagging chromosomal persistence were seen in conjunction with low paclitaxel concentrations. With a median IC50 of 1.4 μM, the single drug BAY-1816032 reduced the proliferation of multiple cell lines in malignancies and shown enhanced efficacy when combined with paclitaxel in almost all of the cell lines that were assessed. Receptor cetaxel has a synergy or additivity (minimal combination) index of 0.3)[1].
ln Vivo
as coupled with the paclitaxel cake cetaxel, BAY 1816032 significantly reduced the size of the tumor as compared to the respective therapies in tumor xenograft trials, where it only marginally suppressed tumor development when localized to the tumor [1].
References

[1]. BAY 1816032, a novel BUB1 kinase inhibitor with potent antitumor activity [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Ishington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 287. doi:10.1158/1538-7445.AM2017-287.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C27H24F2N6O4
Molecular Weight
534.514072418213
Exact Mass
534.182
CAS #
1891087-61-8
PubChem CID
118958833
Appearance
Off-white to yellow solid powder
LogP
3.4
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
11
Rotatable Bond Count
10
Heavy Atom Count
39
Complexity
749
Defined Atom Stereocenter Count
0
SMILES
FC1C=C(C=C(C=1CN1C2C=CC=CC=2C(C2N=CC(=C(NC3C=CN=CC=3OC)N=2)OC)=N1)F)OCCO
InChi Key
QVOGVAVHOLLLAZ-UHFFFAOYSA-N
InChi Code
InChI=1S/C27H24F2N6O4/c1-37-23-13-30-8-7-21(23)32-26-24(38-2)14-31-27(33-26)25-17-5-3-4-6-22(17)35(34-25)15-18-19(28)11-16(12-20(18)29)39-10-9-36/h3-8,11-14,36H,9-10,15H2,1-2H3,(H,30,31,32,33)
Chemical Name
2-[3,5-difluoro-4-[[3-[5-methoxy-4-[(3-methoxypyridin-4-yl)amino]pyrimidin-2-yl]indazol-1-yl]methyl]phenoxy]ethanol
Synonyms
BAY1816032; BAY-1816032; BAY 1816032
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~25 mg/mL (~46.77 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (3.89 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (3.89 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (3.89 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.8709 mL 9.3544 mL 18.7087 mL
5 mM 0.3742 mL 1.8709 mL 3.7417 mL
10 mM 0.1871 mL 0.9354 mL 1.8709 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us