yingweiwo

BAY-1895344 HCl

Alias: Elimusertib; HCl; BAY-1895344 HCl; BAY1895344 HCl; BAY 1895344 HCl; 7N13IK9LNH; BAY1895344; (R)-3-methyl-4-(4-(1-methyl-1H-pyrazol-5-yl)-8-(1H-pyrazol-3-yl)-1,7-naphthyridin-2-yl)morpholine;
Cat No.:V3123 Purity: ≥98%
Elimusertib (BAY1895344) HCl, the hydrochloride salt of BAY 1895344, is a potent, selective and orally bioavailable ATR (ataxia telangiectasia and Rad3-related) inhibitor with potential antineoplastic activity.
BAY-1895344 HCl
BAY-1895344 HCl Chemical Structure CAS No.: 1876467-74-1
Product category: ATM ATR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
2mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: =100%

Purity: ≥98%

Product Description

Elimusertib (BAY1895344) HCl, the hydrochloride salt of BAY 1895344, is a potent, selective and orally bioavailable ataxia telangiectasia and Rad3-related(ATR) inhibitor with potential antineoplastic activity. Its IC50 for inhibiting ATR is 7 nM.

Biological Activity I Assay Protocols (From Reference)
Targets
ATR (IC50 = 7 nM)
ln Vitro

Elimusertib potently inhibits the proliferation of a broad spectrum of human tumor cell lines with a median IC50 of 78 nM[1].
Elimusertib has a potently inhibitory effect on hydroxyurea-induced phosphorylation of H2AX (IC50: 36 nM)[1].
Elimusertib shows good selectivity against mTOR (ratio of IC50 values: mTOR/ATR 61)[3].
Elimusertib exhibits high selectivity against other related kinases, including DNA-PK, ATM, and PI3K (IC50 values of 332 nM, 1420 nM, and 3270 nM, respectively)[3]. Elimusertib exhibits strong antiproliferative activity in vitro against a number of cancer cell lines, including the CRC cell lines HT-29 and LoVo as well as the B-cell lymphoma cell line SU-DHL-8 (IC50: 9 nM)[3].

ln Vivo
Elimusertib causes complete tumor remission in mantle cell lymphoma models and exhibits potent anti-tumor efficacy in monotherapy in a variety of xenograft models of ovarian and colorectal cancer[2].
Elimusertib (50 mg/kg; PO; b.i.d.; 3 days on/4 days off; for 11 days) exhibits potent antitumor activity in the ATM-mutated SU-DHL-8 (ATM K1964E) human GCB-DLBCL cell line derived xenograft model in mice[3].
The platinum-resistant ATM protein low expressing CR5038 human CRC PDX model in NOD/SCID mice exhibits synergistic antitumor activity in combination with Elimusertib (20 mg/kg, and 10 mg/kg from day 14; p.o.; daily; 2 days on/5 days off; for 42 days)[3].
Elimusertib exhibits moderate oral bioavailability (rat 87%, dog 51%) following oral administration (rat and dog 0.6-1 mg/kg)[3].
Elimusertib exhibits terminal elimination half-lives (mouse 0.17 h, rat 1.3 h, and dog 1.0 h) as a result of plasma clearance (3.5, 1.2, and 0.79 L/h/kg, respectively) after intravenous administration (mouse, rat, and dog 0.3-0.5 mg/kg)[3].
Enzyme Assay
Affinity and selectivity of BAY 1895344[2]
A time-resolved fluorescence resonance energy transfer (TR-FRET)-based ATR competition binding assay was used to determine the affinity of BAY 1895344 to ATR using fluorescent 5-TAMRA-labeled Tracer 1, an ATP-competitive ATRi. The ratio of the emissions at 570 and 545 nm was used to evaluate the binding affinity of BAY 1895344 to ATR. The selectivity of BAY 1895344 was assessed using both an in-house kinase panel and a KINOMEscan Assay Panel (DiscoverX) consisting of 468 kinases, as described previously.
The activity of ATR and ATM kinases was determined by measuring phospho-Ser139 histone protein H2AX (γH2AX) levels in hydroxyurea-treated HT-29 cells and neocarzinostatin-treated M059J cells, respectively. PI3K/AKT/mTOR signaling pathway activity was investigated in MCF7 breast cancer cells by measuring AKT phosphorylation.
Cell Assay
The antiproliferative activity of BAY 1895344 is evaluated against a panel of 38 cancer cell lines. After 72 to 96 hours of BAY1895344 exposure, cell proliferation is evaluated. The CellTiter-Glo Cell Viability Assay or crystal violet staining are used to measure cell viability.
The antiproliferative activity of BAY 1895344 was evaluated against a panel of 38 cancer cell lines (Supplementary Table S3). Cell proliferation was measured after 72 to 96 hours of exposure to BAY 1895344. Cell viability was determined using crystal violet staining or the CellTiter-Glo Cell Viability Assay.[2]

The antiproliferative activity of BAY 1895344 in combination with different drugs was assessed by determination of combination indexes (CI). The combination of BAY 1895344 (3–300 nmol/L) with cisplatin (100 nmol/L–10 nmol/L) was investigated in HT-29 cells, and the combination with olaparib (300 nmol/L–30 μmol/L), niraparib (30 nmol/L–3 μmol/L), rucaparib (300 nmol/L–30 μmol/L), or talazoparib (1–100 nmol/L) in MDA-MB-436 cells. Combination studies with BAY 1895344 (10 nmol/L–10 μmol/L) and darolutamide (10 nmol/L–10 μmol/L) were conducted in LAPC-4 cells, in the presence of the synthetic androgen methyltrienolone R1881 (10 nmol/L). Additional combination studies with BAY 1895344 and a selection of compounds were conducted in a panel of cancer cell lines (Supplementary Table S4). Cells were treated with a single compound or a combination of fixed compound ratios for 4 to 6 days, and viability was measured using CellTiter-Glo. EC50 values were calculated from triplicate values for each individual combination data point, and the respective isobolograms were generated. CIs were calculated according to the median-effect model (33). A CI of ≤0.8 was defined as more than additive (i.e., synergistic) interaction, and a CI of ≥1.2 was defined as antagonistic interaction.[2]

The clonogenic combination assay was used to assess the radiosensitization potential of BAY 1895344. LOVO colorectal cancer cells were treated with 3 nmol/L BAY 1895344 and different intensities of γ-radiation, allowed to form colonies for 10 to 14 days and, finally, the colonies were counted to calculate the combination effect.[2]
Animal Protocol
female SCID beige mice, female C.B-17 SCID mice, male NMRI nude mice, female NMRI nude mice
50 mg/kg
Oral gavage
In vivo studies in CDX models[2]
All animal experiments were conducted in accordance with the German Animal Welfare Act and approved by local authorities. The in vivo antitumor efficacy and tolerability of BAY 1895344 as monotherapy/combination therapy were evaluated in CDX subcutaneous or orthotopic xenograft models in mice. Monotherapy experiments were performed in GRANTA-519 (in female SCID beige mice), REC-1 (in female C.B-17 SCID mice), PC-3 (in male NMRI nude mice), LOVO, and A2780 (both in female NMRI nude mice) models treated with BAY 1895344 at 50 mg/kg [all models; twice daily, 3 days on/4 days off (3on/4off), per os/orally] or at 3, 10, or 30 mg/kg (GRANTA-519; twice daily, 3on/4off, per os/orally), ibrutinib (REC-1; 20 mg/kg, once daily, per os/orally), AZD6738 (GRANTA-519, REC-1; 50 mg/kg, once daily, per os/orally), M6620 (GRANTA-519 and REC-1; 100 mg/kg, once daily, per os/orally), or 5-FU (LOVO; 50 mg/kg, once weekly, intraperitoneally). The combination of BAY 1895344 at 10 or 20 mg/kg [once daily, 2 days on/5 days off (2on/5off), per os/orally.] or 50 mg/kg (twice daily, 3on/4off, per os/orally) and carboplatin (50 mg/kg, once weekly, intraperitoneally) was investigated in IGROV-1 tumor–bearing female nude (nu/nu) mice. The combination of 20 or 50 mg/kg BAY 1895344 (twice daily, 2on/5off, per os/orally) and EBRT (5 Gy, 7.7 minutes, once daily on days 12 and 27) was investigated in LOVO tumor–bearing female NMRI nude mice. Combination therapy experiments with 20 or 50 mg/kg BAY 1895344 (twice daily, 3on/4off, per os/orally) and 20 or 50 mg/kg olaparib (once daily, intraperitoneally) were performed in MDA-MB-436 and 22Rv1 models in female NOD/SCID and male SCID mice, respectively. Combination experiments with 20 mg/kg BAY 1895344 (twice daily, 3on/4off, per os/orally) and 100 mg/kg darolutamide (once daily, per os/orally) were performed in the hormone-dependent LAPC-4 prostate cancer model in male C.B-17 SCID mice. Castrated mice served here as a control. For a triple combination treatment, mice received EBRT (5 Gy, every 7 days twice) in addition to treatment with BAY 1895344 and darolutamide.
To elucidate the in vivo mode of action of BAY 1895344, ATR and H2AX phosphorylation was determined in lysed GRANTA-519 xenograft tumor samples. For the quantification of circulating ATRis, plasma samples were taken from mice and measured by LC-MS/MS.
References

[1]. Cancer Res (2017) 77 (13_Supplement): 983.

[2]. Mol Cancer Ther . 2020 Jan;19(1):26-38.

Additional Infomation
Elimusertib is an orally available ataxia telangiectasia and Rad3-related (ATR)-specific kinase inhibitor, with potential antineoplastic activity. Upon oral administration, elimusertib selectively binds to and inhibits the activity of ATR, which prevents ATR-mediated signaling. This inhibits DNA damage checkpoint activation, disrupts DNA damage repair and induces apoptosis in ATR-overexpressing tumor cells. ATR, a serine/threonine protein kinase upregulated in a variety of cancer cell types, plays a key role in DNA repair, cell cycle progression and cell survival.
The integrity of the genome of eukaryotic cells is secured by complex signaling pathways, known as DNA damage response (DDR). Recognition of DNA damage activates DDR pathways resulting in cell cycle arrest, suppression of general translation, induction of DNA repair, cell survival or even cell death. Proteins that directly recognize aberrant DNA structures recruit and activate kinases of the DDR pathway, such as ATR (ataxia telangiectasia and Rad3-related). ATR responds to a broad spectrum of DNA damage, including double-strand breaks (DSB) and lesions derived from interference with DNA replication as well as increased replication stress (e.g. in oncogene-driven tumor cells). Therefore, inhibition of ATR kinase activity could be the basis for a novel anti-cancer therapy in tumors with increased DNA damage, deficiency in DNA damage repair or replication stress. Herein we report the identification of the potent, highly selective and orally available ATR inhibitor BAY 1895344 by a collaborative effort involving medicinal chemistry, pharmacology, DMPK and computational chemistry. The chemical structures of lead compound BAY-937 and clinical candidate BAY 1895344 as well as the main SAR trends within this novel class of naphthyridine derivatives will be disclosed for the first time. The novel lead compound BAY-937 revealed promising inhibition of ATR (IC50 = 78 nM) and high kinase selectivity in vitro. In cellular mechanistic assays BAY-937 inhibited hydroxyurea-induced H2AX phosphorylation (IC50 = 380 nM) demonstrating the anticipated mode of action. Moreover, BAY-937 was shown to inhibit proliferation of a variety of tumor cell lines with low- to sub-micromolar IC50 values. In initial xenograft studies, BAY-937 revealed moderate activity in monotherapy and in combination with cis-platin. However, BAY-937 also revealed low aqueous solubility, low bioavailability (rat) and activity in the hERG patch clamp assay. Extensive lead optimization efforts led to the identification of the novel, orally available ATR inhibitor BAY 1895344. In vitro, BAY 1895344 was shown to be a very potent and highly selective ATR inhibitor (IC50 = 7 nM), which potently inhibits proliferation of a broad spectrum of human tumor cell lines (median IC50 = 78 nM). In cellular mechanistic assays BAY 1895344 potently inhibited hydroxyurea-induced H2AX phosphorylation (IC50 = 36 nM). Moreover, BAY 1895344 revealed significantly improved aqueous solubility, bioavailability across species and no activity in the hERG patch-clamp assay. BAY 1895344 also demonstrated very promising efficacy in monotherapy in DNA damage deficient tumor models as well as combination treatment with DNA damage inducing therapies. The start of clinical investigation of BAY 1895344 is planned for early 2017. [1]
The DNA damage response (DDR) secures the integrity of the genome of eukaryotic cells. DDR deficiencies can promote tumorigenesis but concurrently may increase dependence on alternative repair pathways. The ataxia telangiectasia and Rad3-related (ATR) kinase plays a central role in the DDR by activating essential signaling pathways of DNA damage repair. Here, we studied the effect of the novel selective ATR kinase inhibitor BAY 1895344 on tumor cell growth and viability. Potent antiproliferative activity was demonstrated in a broad spectrum of human tumor cell lines. BAY 1895344 exhibited strong monotherapy efficacy in cancer xenograft models that carry DNA damage repair deficiencies. The combination of BAY 1895344 with DNA damage-inducing chemotherapy or external beam radiotherapy (EBRT) showed synergistic antitumor activity. Combination treatment with BAY 1895344 and DDR inhibitors achieved strong synergistic antiproliferative activity in vitro, and combined inhibition of ATR and PARP signaling using olaparib demonstrated synergistic antitumor activity in vivo Furthermore, the combination of BAY 1895344 with the novel, nonsteroidal androgen receptor antagonist darolutamide resulted in significantly improved antitumor efficacy compared with respective single-agent treatments in hormone-dependent prostate cancer, and addition of EBRT resulted in even further enhanced antitumor efficacy. Thus, the ATR inhibitor BAY 1895344 may provide new therapeutic options for the treatment of cancers with certain DDR deficiencies in monotherapy and in combination with DNA damage-inducing or DNA repair-compromising cancer therapies by improving their efficacy.[2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C20H21N7O
Molecular Weight
375.43
Exact Mass
411.15743
Elemental Analysis
C, 58.32; H, 5.38; Cl, 8.61; N, 23.80; O, 3.88
CAS #
1876467-74-1
Related CAS #
Elimusertib hydrochloride;Elimusertib-d3
PubChem CID
118869362
Appearance
Yellow solid powder
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
3
Heavy Atom Count
28
Complexity
537
Defined Atom Stereocenter Count
1
InChi Key
YBXRSCXGRPSTMW-CYBMUJFWSA-N
InChi Code
InChI=1S/C20H21N7O/c1-13-12-28-10-9-27(13)18-11-15(17-5-8-23-26(17)2)14-3-6-21-20(19(14)24-18)16-4-7-22-25-16/h3-8,11,13H,9-10,12H2,1-2H3,(H,22,25)/t13-/m1/s1
Chemical Name
(3R)-3-methyl-4-[4-(2-methylpyrazol-3-yl)-8-(1H-pyrazol-5-yl)-1,7-naphthyridin-2-yl]morpholine
Synonyms
Elimusertib; HCl; BAY-1895344 HCl; BAY1895344 HCl; BAY 1895344 HCl; 7N13IK9LNH; BAY1895344; (R)-3-methyl-4-(4-(1-methyl-1H-pyrazol-5-yl)-8-(1H-pyrazol-3-yl)-1,7-naphthyridin-2-yl)morpholine;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~5.4 mg/mL (~14.38 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 1.09 mg/mL (2.90 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 10.9 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 2: 0.89 mg/mL (2.37 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 8.9 mg/mL clear DMSO stock solution to 400 μL of PEG300 and mix evenly; then add 50 μL of Tween-80 to the above solution and mix evenly; then add 450 μL of normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

View More

Solubility in Formulation 3: 4 mg/mL (10.65 mM) in 0.5% CMC-Na/saline water (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6636 mL 13.3181 mL 26.6361 mL
5 mM 0.5327 mL 2.6636 mL 5.3272 mL
10 mM 0.2664 mL 1.3318 mL 2.6636 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Testing the Addition of an Anticancer Drug, BAY 1895344, to the Usual Chemotherapy With FOLFIRI in Advanced or Metastatic Cancers of the Stomach and Intestines
CTID: NCT04535401
Phase: Phase 1
Status: Active, not recruiting
Date: 2024-10-10
Testing the Addition of an Anti-cancer Drug, BAY 1895344, With Radiation Therapy to the Usual Pembrolizumab Treatment for Recurrent Head and Neck Cancer
CTID: NCT04576091
Phase: Phase 1
Status: Active, not recruiting
Date: 2024-10-10
Testing the Addition of an Anti-cancer Drug, BAY 1895344, to Usual Chemotherapy for Advanced Stage Solid Tumors, With a Specific Focus on Patients With Small Cell Lung Cancer, Poorly Differentiated Neuroendocrine Cancer, and Pancreatic Cancer
CTID: NCT04514497
Phase: Phase 1
Status: Active, not recruiting
Date: 2024-09-26
Testing the Addition of an Anti-cancer Drug, BAY 1895344, to the Usual Chemotherapy Treatment (Cisplatin, or Cisplatin and Gemcitabine) for Advanced Solid Tumors With Emphasis on Urothelial Cancer
CTID: NCT04491942
Phase: Phase 1
Status: Active, not recruiting
Date: 2024-08-15
Testing the Addition of an Anti-cancer Drug, Elimusertib (BAY 1895344) ATR Inhibitor, to the Chemotherapy Treatment (Gemcitabine) for Advanced Pancreatic and Ovarian Cancer, and Advanced Solid Tumors
CTID: NCT04616534
Phase: Phase 1
Status: Active, not recruiting
Date: 2024-08-13
Biological Data
  • TIC10 Analogue


  • TIC10 Analogue

    TIC10 induces TRAIL in tumor and normal cells.

  • TIC10 Analogue

    TIC10 is effective as an antitumor agent in GBM.

Contact Us