yingweiwo

BAY 85-8501

Alias: BAY 858501; BAY858501; BAY-858501; BAY 85-8501; BAY85-8501; BAY-85-8501.
Cat No.:V4182 Purity: ≥98%
BAY 85-8501 is a novel, highly potent and selective inhibitor ofHuman Neutrophil Elastase (HNE)with anIC50of 65 pM.
BAY 85-8501
BAY 85-8501 Chemical Structure CAS No.: 1161921-82-9
Product category: Elastase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
Other Sizes

Other Forms of BAY 85-8501:

  • (R)-BAY-85-8501
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

BAY 85-8501 is a novel, highly potent and selective inhibitor of Human Neutrophil Elastase (HNE) with an IC50 of 65 pM. BAY 85-8501 exhibited high in vivo efficacy in various preclinical animal models and is currently being studied in clinical studies for the treatment of pulmonary diseases. Human neutrophil elastase (HNE) is a key protease for matrix degradation. High HNE activity is observed in inflammatory diseases. Accordingly, HNE is a potential target for the treatment of pulmonary diseases such as chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), bronchiectasis (BE), and pulmonary hypertension (PH). HNE inhibitors should reestablish the protease-anti-protease balance. By means of medicinal chemistry a novel dihydropyrimidinone lead-structure class was identified. Further chemical optimization yielded orally active compounds with favorable pharmacokinetics such as the chemical probe BAY-678. While maintaining outstanding target selectivity, picomolar potency was achieved by locking the bioactive conformation of these inhibitors with a strategically positioned methyl sulfone substituent. An induced-fit binding mode allowed tight interactions with the S2 and S1 pockets of HNE. BAY 85-8501 ((4S)-4-[4-cyano-2-(methylsulfonyl)phenyl]-3,6-dimethyl-2-oxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydropyrimidine-5-carbonitrile) was shown to be efficacious in a rodent animal model related to ALI. BAY 85-8501 is currently being tested in clinical studies for the treatment of pulmonary diseases.

Biological Activity I Assay Protocols (From Reference)
ln Vivo
In this scenario, the main source of damage and pulmonary bleeding is exogenous HNE noxa. When provided one hour before to HNE noxa, BAY-85-8501 (29) entirely avoided the development of lung damage and subsequent inflammation, based on picomolar potency against HNE and single-digit potency against MNE. There has been a substantial decrease in hemoglobin concentration in the 0.01 mg/kg dosage group. There was a noticeable impact on neutrophil counts at 0.1 mg/kg. In this situation, potency against HNE (Ki=0.08 nM) was the main factor influencing efficacy. In this context, BAY-85-8501, a highly HNE-selective inhibitor, does not prevent primary lung injury since it has no effect on PPE. Though less potently, BAY-85-8501 can block MNE, an endogenous driver of inflammation and secondary damage. As a result, BAY-85-8501 now has a minimal impact on inflammation and secondary damage and is only noticeable at doses that are thirty times higher. Potency against MNE (Ki=6 nM) is the primary factor influencing efficacy in the second setting [1].
References

[1]. Freezing the Bioactive Conformation to Boost Potency: The Identification of BAY 85-8501, a Selective and Potent Inhibitor of Human Neutrophil Elastase for Pulmonary Diseases. ChemMedChem. 2015 Jul;10(7):1163-73.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H17F3N4O3S
Molecular Weight
474.455593824387
Exact Mass
474.097
CAS #
1161921-82-9
Related CAS #
(R)-BAY-85-8501;2446175-39-7
PubChem CID
66601502
Appearance
White to off-white solid powder
Density
1.5±0.1 g/cm3
Boiling Point
626.7±55.0 °C at 760 mmHg
Flash Point
332.8±31.5 °C
Vapour Pressure
0.0±1.8 mmHg at 25°C
Index of Refraction
1.622
LogP
1.99
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
3
Heavy Atom Count
33
Complexity
1030
Defined Atom Stereocenter Count
1
SMILES
CC1=C([C@H](N(C(=O)N1C2=CC=CC(=C2)C(F)(F)F)C)C3=C(C=C(C=C3)C#N)S(=O)(=O)C)C#N
InChi Key
YAJWYFPMASPAMM-HXUWFJFHSA-N
InChi Code
InChI=1S/C22H17F3N4O3S/c1-13-18(12-27)20(17-8-7-14(11-26)9-19(17)33(3,31)32)28(2)21(30)29(13)16-6-4-5-15(10-16)22(23,24)25/h4-10,20H,1-3H3/t20-/m1/s1
Chemical Name
(S)-4-(4-cyano-2-(methylsulfonyl)phenyl)-3,6-dimethyl-2-oxo-1-(3-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydropyrimidine-5-carbonitrile
Synonyms
BAY 858501; BAY858501; BAY-858501; BAY 85-8501; BAY85-8501; BAY-85-8501.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~200 mg/mL (~421.53 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 5 mg/mL (10.54 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 5 mg/mL (10.54 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

View More

Solubility in Formulation 3: 2.5 mg/mL (5.27 mM) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1077 mL 10.5383 mL 21.0766 mL
5 mM 0.4215 mL 2.1077 mL 4.2153 mL
10 mM 0.2108 mL 1.0538 mL 2.1077 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • BAY 85-8501

    Selection of HNE inhibitors that have reached clinical development.ChemMedChem. 2015 Jul;10(7):1163-73.

  • BAY 85-8501

    Locking the bioactive conformation with substituents at N3 and C2′. Conformational analysis of free ligands based on modeling. Relaxed coordinate scan of the rotation of the cyanophenyl moiety of 22 and 27 from 0° to 180° in steps of 2°. Depicted is the dihedral angle along N3=C4=C1′=C2′.ChemMedChem. 2015 Jul;10(7):1163-73.

  • BAY 85-8501

    Acute lung injury (ALI) in vivo model in mice. a) Schematic representation of the experimental rationale.ChemMedChem. 2015 Jul;10(7):1163-73.

Contact Us