yingweiwo

Beclomethasone dipropionate (Beclomethasone)

Alias:
Cat No.:V1716 Purity: ≥98%
Beclomethasone dipropionate (also called BDP;Clenil; Qvar; Beconase; alanase; Vancenase) is a topical anti-inflammatory corticosteroid approved for use in treatment of asthma and rhinitis.
Beclomethasone dipropionate (Beclomethasone)
Beclomethasone dipropionate (Beclomethasone) Chemical Structure CAS No.: 5534-09-8
Product category: Glucocorticoid Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
50mg
100mg
250mg
500mg
1g
2g
Other Sizes

Other Forms of Beclomethasone dipropionate (Beclomethasone):

  • Betamethasone Dipropionate
  • Beclometasone (Beclometasone)
  • Beclometasone dipropionate monohydrate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Beclomethasone dipropionate (also called BDP; Clenil; Qvar; Beconase; alanase; Vancenase) is a topical anti-inflammatory corticosteroid approved for use in treatment of asthma and rhinitis. In addition, Beclomethasone dipropionate has been reported to be previously developed as aqueous nasal formulations for the treatment of Allergic rhinitis. Moreover, Beclomethasone dipropionate has shown the availability in dry nasal aerosol formulations as chiorofluoro carbon metered-dose inhaler nasal sprays.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
In 16HBE cells, beclometasone dipropionate (1-100 nM; 20 min) decreases the amounts of NT, ROS, and iNOS produced by rhIL-17A as well as STAT-1 expression[2].
ln Vivo
Beclometasone dipropionate (150 µg/kg; nebulization; male BALB/c mice) reduces the relative eosinophil number and total cell count while relieving asthma[1].
Cell Assay
Western Blot Analysis[2]
Cell Types: 16HBE cells
Tested Concentrations: 1, 10 and 100 nM
Incubation Duration: 20 min
Experimental Results: decreased the levels of iNOS, ROS and NT generated by rhIL-17A.
Animal Protocol
Animal/Disease Models: Tenweeks old male balb/c (Bagg ALBino) mouse[2].
Doses: 5 mg/kg (100 μg/ml for 60 min).
Route of Administration: Orally at 24 h and 1 h before the LPS aerosol.
Experimental Results: Dramatically (P < 0.05) inhibited the decrease of IL-10 level in BAL fluid induced by LPS exposure. Markedly decreased the release of both MMP-2 and MMP-9.

Animal/Disease Models: Male balb/c (Bagg ALBino) mouse with asthma[1]
Doses: 150 µg/kg
Route of Administration: Nebulization
Experimental Results: diminished total cell number and relative eosinophil number in BALF .
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Following oral inhalation of 320 mcg of beclomethasone dipropionate (BDP), the Cmax was 88 pg/mL and it was reached after 0.5 at post-administration. The mean Cmax of the major and most active metabolite, beclomethasone-17-monopropionate (17-BMP), was 1419 pg/mL at 0.7 hour post-dosing. In another pharmacokinetic study, the AUC of BDP and 17-BMP were 6660 and 6185 pgxh/mL, respectively. The Cmax was 35356 pg/mL for BDP and 2633 pg/mL for 17-BMP, and and the median time to reach these concentrations (Tmax) was 0.2 hours. In the same study, the AUC of 17-BMP following oral and intranasal administration were 10158 and 3660 pgxh/mL, respectively. The Cmax of 17-BMP following oral and intranasal administration were 703 and 310 pg/mL, respectively, and the Tmax was 4 hours. The total bioavailability of 17-BMP following oral and intranasal administration were 41% and 44%, respectively.
Regardless of the route of administration, beclomethasone dipropionate and its metabolites are predominantly excreted in the feces, with less than 10% of the drug and its metabolites being excreted in the urine.
Following intravenous administration, the steady-state volume of distribution was 20 L for beclomethasone dipropionate and 424 L for the active metabolite, beclomethasone-17-monopropionate.
Following intravenous administration, the clearance of beclomethasone dipropionate and 17-BMP were 150 L/h and 120 L/h, respectively.
Metabolism / Metabolites
During absorption, beclomethasone dipropionate is undergoes rapid and extensive hydrolysis mediated by esterases CYP3A to form beclomethasone-17-monopropionate (17-BMP), beclomethasone-21-monopropionate (21-BMP), and beclomethasone (BOH). 17-BMP is the major active metabolite with the most potent anti-inflammatory activity. About 95% of the total beclomethasone dipropionate administered via oral inhalation undergoes presystemic conversion to form 17-BMP in the lung.
Biological Half-Life
Following intravenous administration, the half life of beclomethasone dipropionate was 0.5 hours while the half life of the active metabolite 17-BMP was 2.7 hours. Following oral and intranasal administration, the half life of 17-BMP was 8.8 and 5.7 hours, respectively.
Toxicity/Toxicokinetics
Protein Binding
Based on the findings of _in vitro_ studies, the protein binding of the main active metabolite, beclomethasone-17-monopropionate (17-BMP), was 94-96% over the concentration range of 1000 to 5000 pg/mL.
References

[1]. Applicability of an ultrasonic nebulization system for the airways delivery of beclomethasone dipropionate in a murine model of asthma. Pharm Res. 2006 Aug;23(8):1765-75.

[2]. Beclomethasone dipropionate and formoterol reduce oxidative/nitrosative stress generated by cigarette smoke extracts and IL-17A in human bronchial epithelial cells. Eur J Pharmacol. 2013 Oct 15;718(1-3):418-27.

Additional Infomation
Beclomethasone Dipropionate can cause developmental toxicity according to state or federal government labeling requirements.
Beclomethasone dipropionate is a steroid ester comprising beclomethasone having propionyl groups at the 17- and 21-positions. It has a role as an anti-inflammatory drug, an anti-asthmatic drug, a prodrug and an anti-arrhythmia drug. It is a steroid ester, an enone, a 20-oxo steroid, an 11beta-hydroxy steroid, a propanoate ester, a corticosteroid, a glucocorticoid, a 3-oxo-Delta(1),Delta(4)-steroid and a chlorinated steroid. It is functionally related to a beclomethasone.
Beclomethasone dipropionate is a second-generation synthetic corticosteroid and diester of beclomethasone, which is structurally similar to [dexamethasone]. It is a prodrug of an active metabolite beclomethasone 17-monopropionate (17-BMP) which acts on the glucocorticoid receptor to mediates its therapeutic action. Beclomethasone dipropionate itself posesses weak glucocorticoid receptor binding affinity and is rapidly converted into 17-BMP upon administration. Formulations for oral inhalation, intranasal, and topical use are available for beclomethasone dipropionate. Beclomethasone dipropionate became first available in a pressurized metered-dose inhaler in 1972 and later in a dry powder inhaler and an aqueous nasal spray. Due to its anti-inflammatory, antipruritic, and anti-allergy properties, beclomethasone dipropionate is used in various inflammatory conditions, such as asthma, allergic rhinitis, and dermatoses to reduce symptoms. When inhaled, it is proposed that beclomethasone dipropionate remains active locally in the lung without causing significant side effects associated with systemic corticosteroids. Compared to earlier corticosteroids such as [dexamethasone] and [prednisolone], beclomethasone dipropionate is reported to be less irritating to the nasal mucosa with a longer duration of action when administered intranasally.
Beclomethasone Dipropionate is the dipropionate ester of a synthetic glucocorticoid with anti-inflammatory and immunomodulating properties. After cell surface receptor attachment and cell entry, beclomethasone enters the nucleus where it binds to and activates specific nuclear receptors, resulting in an altered gene expression and inhibition of proinflammatory cytokine production.
An anti-inflammatory, synthetic glucocorticoid. It is used topically as an anti-inflammatory agent and in aerosol form for the treatment of ASTHMA.
See also: Beclomethasone (has active moiety); Beclomethasone 17-Monopropionate (has active moiety); Beclomethasone Dipropionate Monohydrate (annotation moved to).
Drug Indication
Indicated for oral inhalation use in the maintenance treatment of asthma as prophylactic therapy in patients 5 years of age and older. The aerosol form of beclomethasone diproprionate is not indicated for the relief of acute bronchospasm. Indicated for intranasal use to relieve the symptoms of seasonal or perennial allergic and nonallergic (vasomotor) rhinitis and prevent the recurrence of nasal polyps following surgical removal. Indicated for the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses in patients 13 years of age and older. Corticosteroid-responsive dermatoses include psoriasis, contact dermatitis (dermatitis venenata), atopic dermatitis (infantile eczema, allergic dermatitis), neurodermatitis (lichen simplex chronicus, lichen planus, eczema, eczematous dermatitis), intertrigo, dyshidroses (pompholyx), seborrheic dermatitis, exfoliative dermatitis, solar dermatitis, stasis dermatitis, and anogenital and senile pruritus.
Mechanism of Action
Beclomethasone dipropionate is a corticosteroid and prodrug that is rapidly activated by hydrolysis to the active monoester, 17 monopropionate (17-BMP), which mediates anti-inflammatory actions. 17-BMP has been shown _in vitro_ to exhibit a binding affinity for the human glucocorticoid receptor which is approximately 13 times that of dexamethasone and 25 times that of beclomethasone dipropionate. Upon binding of the ligand, the glucocorticoid receptors dimerize and translocate into the nucleus, where they subsequently bind to glucocorticoid response elements (GRE) on glucocorticoid-responsive genes, leading to changes in transcription. There are several proposed mechanisms for the anti-inflammatory action of corticosteroids. Corticosteroids may work by increasing the transcription of genes coding for anti-inflammatory proteins, including lipocortin-1 and interleukin-10. Corticosteroids were also shown to inhibit the expression of multiple genes that encode pro-inflammatory factors, such as cytokines, chemokines, and adhesion molecules, that are activated during the chronic inflammatory process. This is thought to be due to the direct inhibitory interaction between activated glucocorticoid receptors and activated pro-inflammatory transcription factors, such as nuclear factor-kappa B and activator protein-1. Chronic inflammation is often characterized by enhanced expression of these transcription factors that bind to and activate coactivator molecules, which then acetylate core histones to switch on gene transcription to further amplify the inflammatory process. Corticosteroids suppress the multiple inflammatory gene expression by promoting histone deacetylation, resulting in tighter coiling of DNA and reduced access of transcription factors to their binding sites.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C28H37CLO7
Molecular Weight
521.04
Exact Mass
520.222
CAS #
5534-09-8
Related CAS #
Betamethasone dipropionate;5593-20-4;Beclometasone dipropionate-d10;Beclometasone;4419-39-0;Beclometasone dipropionate-d6;Beclometasone dipropionate monohydrate;77011-63-3
PubChem CID
21700
Appearance
White to off-white solid powder
Density
1.3±0.1 g/cm3
Boiling Point
630.5±55.0 °C at 760 mmHg
Melting Point
210ºC
Flash Point
335.1±31.5 °C
Vapour Pressure
0.0±4.2 mmHg at 25°C
Index of Refraction
1.564
LogP
4.59
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
8
Heavy Atom Count
36
Complexity
1050
Defined Atom Stereocenter Count
8
SMILES
CCC(=O)OCC(=O)[C@]1([C@H](C[C@@H]2[C@@]1(C[C@@H]([C@]3([C@H]2CCC4=CC(=O)C=C[C@@]43C)Cl)O)C)C)OC(=O)CC
InChi Key
KUVIULQEHSCUHY-XYWKZLDCSA-N
InChi Code
InChI=1S/C28H37ClO7/c1-6-23(33)35-15-22(32)28(36-24(34)7-2)16(3)12-20-19-9-8-17-13-18(30)10-11-25(17,4)27(19,29)21(31)14-26(20,28)5/h10-11,13,16,19-21,31H,6-9,12,14-15H2,1-5H3/t16-,19-,20-,21-,25-,26-,27-,28-/m0/s1
Chemical Name
(8S,9R,10S,11S,13S,14S,16S,17R)-9-chloro-11-hydroxy-10,13,16-trimethyl-3-oxo-17-[2-(propionyloxy)acetyl]-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-3H-cyclopenta[a]phenanthren-17-yl propionate
Synonyms

Beclomethasone dipropionate; Clenil; Qvar; Beconase; alanase; Vancenase; Beclometasone dipropionate

HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:104 mg/mL (199.6 mM)
Water:<1 mg/mL
Ethanol:18 mg/mL (34.5 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (4.80 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (4.80 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.9192 mL 9.5962 mL 19.1924 mL
5 mM 0.3838 mL 1.9192 mL 3.8385 mL
10 mM 0.1919 mL 0.9596 mL 1.9192 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us