Size | Price | Stock | Qty |
---|---|---|---|
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
2g |
|
||
Other Sizes |
|
Purity: ≥98%
Beclomethasone dipropionate (also called BDP; Clenil; Qvar; Beconase; alanase; Vancenase) is a topical anti-inflammatory corticosteroid approved for use in treatment of asthma and rhinitis. In addition, Beclomethasone dipropionate has been reported to be previously developed as aqueous nasal formulations for the treatment of Allergic rhinitis. Moreover, Beclomethasone dipropionate has shown the availability in dry nasal aerosol formulations as chiorofluoro carbon metered-dose inhaler nasal sprays.
ln Vitro |
In 16HBE cells, beclometasone dipropionate (1-100 nM; 20 min) decreases the amounts of NT, ROS, and iNOS produced by rhIL-17A as well as STAT-1 expression[2].
|
---|---|
ln Vivo |
Beclometasone dipropionate (150 µg/kg; nebulization; male BALB/c mice) reduces the relative eosinophil number and total cell count while relieving asthma[1].
|
Cell Assay |
Western Blot Analysis[2]
Cell Types: 16HBE cells Tested Concentrations: 1, 10 and 100 nM Incubation Duration: 20 min Experimental Results: decreased the levels of iNOS, ROS and NT generated by rhIL-17A. |
Animal Protocol |
Animal/Disease Models: Tenweeks old male balb/c (Bagg ALBino) mouse[2].
Doses: 5 mg/kg (100 μg/ml for 60 min). Route of Administration: Orally at 24 h and 1 h before the LPS aerosol. Experimental Results: Dramatically (P < 0.05) inhibited the decrease of IL-10 level in BAL fluid induced by LPS exposure. Markedly decreased the release of both MMP-2 and MMP-9. Animal/Disease Models: Male balb/c (Bagg ALBino) mouse with asthma[1] Doses: 150 µg/kg Route of Administration: Nebulization Experimental Results: diminished total cell number and relative eosinophil number in BALF . |
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Following oral inhalation of 320 mcg of beclomethasone dipropionate (BDP), the Cmax was 88 pg/mL and it was reached after 0.5 at post-administration. The mean Cmax of the major and most active metabolite, beclomethasone-17-monopropionate (17-BMP), was 1419 pg/mL at 0.7 hour post-dosing. In another pharmacokinetic study, the AUC of BDP and 17-BMP were 6660 and 6185 pgxh/mL, respectively. The Cmax was 35356 pg/mL for BDP and 2633 pg/mL for 17-BMP, and and the median time to reach these concentrations (Tmax) was 0.2 hours. In the same study, the AUC of 17-BMP following oral and intranasal administration were 10158 and 3660 pgxh/mL, respectively. The Cmax of 17-BMP following oral and intranasal administration were 703 and 310 pg/mL, respectively, and the Tmax was 4 hours. The total bioavailability of 17-BMP following oral and intranasal administration were 41% and 44%, respectively. Regardless of the route of administration, beclomethasone dipropionate and its metabolites are predominantly excreted in the feces, with less than 10% of the drug and its metabolites being excreted in the urine. Following intravenous administration, the steady-state volume of distribution was 20 L for beclomethasone dipropionate and 424 L for the active metabolite, beclomethasone-17-monopropionate. Following intravenous administration, the clearance of beclomethasone dipropionate and 17-BMP were 150 L/h and 120 L/h, respectively. Metabolism / Metabolites During absorption, beclomethasone dipropionate is undergoes rapid and extensive hydrolysis mediated by esterases CYP3A to form beclomethasone-17-monopropionate (17-BMP), beclomethasone-21-monopropionate (21-BMP), and beclomethasone (BOH). 17-BMP is the major active metabolite with the most potent anti-inflammatory activity. About 95% of the total beclomethasone dipropionate administered via oral inhalation undergoes presystemic conversion to form 17-BMP in the lung. Biological Half-Life Following intravenous administration, the half life of beclomethasone dipropionate was 0.5 hours while the half life of the active metabolite 17-BMP was 2.7 hours. Following oral and intranasal administration, the half life of 17-BMP was 8.8 and 5.7 hours, respectively. |
Toxicity/Toxicokinetics |
Protein Binding
Based on the findings of _in vitro_ studies, the protein binding of the main active metabolite, beclomethasone-17-monopropionate (17-BMP), was 94-96% over the concentration range of 1000 to 5000 pg/mL. |
References |
|
Additional Infomation |
Beclomethasone Dipropionate can cause developmental toxicity according to state or federal government labeling requirements.
Beclomethasone dipropionate is a steroid ester comprising beclomethasone having propionyl groups at the 17- and 21-positions. It has a role as an anti-inflammatory drug, an anti-asthmatic drug, a prodrug and an anti-arrhythmia drug. It is a steroid ester, an enone, a 20-oxo steroid, an 11beta-hydroxy steroid, a propanoate ester, a corticosteroid, a glucocorticoid, a 3-oxo-Delta(1),Delta(4)-steroid and a chlorinated steroid. It is functionally related to a beclomethasone. Beclomethasone dipropionate is a second-generation synthetic corticosteroid and diester of beclomethasone, which is structurally similar to [dexamethasone]. It is a prodrug of an active metabolite beclomethasone 17-monopropionate (17-BMP) which acts on the glucocorticoid receptor to mediates its therapeutic action. Beclomethasone dipropionate itself posesses weak glucocorticoid receptor binding affinity and is rapidly converted into 17-BMP upon administration. Formulations for oral inhalation, intranasal, and topical use are available for beclomethasone dipropionate. Beclomethasone dipropionate became first available in a pressurized metered-dose inhaler in 1972 and later in a dry powder inhaler and an aqueous nasal spray. Due to its anti-inflammatory, antipruritic, and anti-allergy properties, beclomethasone dipropionate is used in various inflammatory conditions, such as asthma, allergic rhinitis, and dermatoses to reduce symptoms. When inhaled, it is proposed that beclomethasone dipropionate remains active locally in the lung without causing significant side effects associated with systemic corticosteroids. Compared to earlier corticosteroids such as [dexamethasone] and [prednisolone], beclomethasone dipropionate is reported to be less irritating to the nasal mucosa with a longer duration of action when administered intranasally. Beclomethasone Dipropionate is the dipropionate ester of a synthetic glucocorticoid with anti-inflammatory and immunomodulating properties. After cell surface receptor attachment and cell entry, beclomethasone enters the nucleus where it binds to and activates specific nuclear receptors, resulting in an altered gene expression and inhibition of proinflammatory cytokine production. An anti-inflammatory, synthetic glucocorticoid. It is used topically as an anti-inflammatory agent and in aerosol form for the treatment of ASTHMA. See also: Beclomethasone (has active moiety); Beclomethasone 17-Monopropionate (has active moiety); Beclomethasone Dipropionate Monohydrate (annotation moved to). Drug Indication Indicated for oral inhalation use in the maintenance treatment of asthma as prophylactic therapy in patients 5 years of age and older. The aerosol form of beclomethasone diproprionate is not indicated for the relief of acute bronchospasm. Indicated for intranasal use to relieve the symptoms of seasonal or perennial allergic and nonallergic (vasomotor) rhinitis and prevent the recurrence of nasal polyps following surgical removal. Indicated for the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses in patients 13 years of age and older. Corticosteroid-responsive dermatoses include psoriasis, contact dermatitis (dermatitis venenata), atopic dermatitis (infantile eczema, allergic dermatitis), neurodermatitis (lichen simplex chronicus, lichen planus, eczema, eczematous dermatitis), intertrigo, dyshidroses (pompholyx), seborrheic dermatitis, exfoliative dermatitis, solar dermatitis, stasis dermatitis, and anogenital and senile pruritus. Mechanism of Action Beclomethasone dipropionate is a corticosteroid and prodrug that is rapidly activated by hydrolysis to the active monoester, 17 monopropionate (17-BMP), which mediates anti-inflammatory actions. 17-BMP has been shown _in vitro_ to exhibit a binding affinity for the human glucocorticoid receptor which is approximately 13 times that of dexamethasone and 25 times that of beclomethasone dipropionate. Upon binding of the ligand, the glucocorticoid receptors dimerize and translocate into the nucleus, where they subsequently bind to glucocorticoid response elements (GRE) on glucocorticoid-responsive genes, leading to changes in transcription. There are several proposed mechanisms for the anti-inflammatory action of corticosteroids. Corticosteroids may work by increasing the transcription of genes coding for anti-inflammatory proteins, including lipocortin-1 and interleukin-10. Corticosteroids were also shown to inhibit the expression of multiple genes that encode pro-inflammatory factors, such as cytokines, chemokines, and adhesion molecules, that are activated during the chronic inflammatory process. This is thought to be due to the direct inhibitory interaction between activated glucocorticoid receptors and activated pro-inflammatory transcription factors, such as nuclear factor-kappa B and activator protein-1. Chronic inflammation is often characterized by enhanced expression of these transcription factors that bind to and activate coactivator molecules, which then acetylate core histones to switch on gene transcription to further amplify the inflammatory process. Corticosteroids suppress the multiple inflammatory gene expression by promoting histone deacetylation, resulting in tighter coiling of DNA and reduced access of transcription factors to their binding sites. |
Molecular Formula |
C28H37CLO7
|
|
---|---|---|
Molecular Weight |
521.04
|
|
Exact Mass |
520.222
|
|
CAS # |
5534-09-8
|
|
Related CAS # |
Betamethasone dipropionate;5593-20-4;Beclometasone dipropionate-d10;Beclometasone;4419-39-0;Beclometasone dipropionate-d6;Beclometasone dipropionate monohydrate;77011-63-3
|
|
PubChem CID |
21700
|
|
Appearance |
White to off-white solid powder
|
|
Density |
1.3±0.1 g/cm3
|
|
Boiling Point |
630.5±55.0 °C at 760 mmHg
|
|
Melting Point |
210ºC
|
|
Flash Point |
335.1±31.5 °C
|
|
Vapour Pressure |
0.0±4.2 mmHg at 25°C
|
|
Index of Refraction |
1.564
|
|
LogP |
4.59
|
|
Hydrogen Bond Donor Count |
1
|
|
Hydrogen Bond Acceptor Count |
7
|
|
Rotatable Bond Count |
8
|
|
Heavy Atom Count |
36
|
|
Complexity |
1050
|
|
Defined Atom Stereocenter Count |
8
|
|
SMILES |
CCC(=O)OCC(=O)[C@]1([C@H](C[C@@H]2[C@@]1(C[C@@H]([C@]3([C@H]2CCC4=CC(=O)C=C[C@@]43C)Cl)O)C)C)OC(=O)CC
|
|
InChi Key |
KUVIULQEHSCUHY-XYWKZLDCSA-N
|
|
InChi Code |
InChI=1S/C28H37ClO7/c1-6-23(33)35-15-22(32)28(36-24(34)7-2)16(3)12-20-19-9-8-17-13-18(30)10-11-25(17,4)27(19,29)21(31)14-26(20,28)5/h10-11,13,16,19-21,31H,6-9,12,14-15H2,1-5H3/t16-,19-,20-,21-,25-,26-,27-,28-/m0/s1
|
|
Chemical Name |
(8S,9R,10S,11S,13S,14S,16S,17R)-9-chloro-11-hydroxy-10,13,16-trimethyl-3-oxo-17-[2-(propionyloxy)acetyl]-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-3H-cyclopenta[a]phenanthren-17-yl propionate
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (4.80 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (4.80 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.9192 mL | 9.5962 mL | 19.1924 mL | |
5 mM | 0.3838 mL | 1.9192 mL | 3.8385 mL | |
10 mM | 0.1919 mL | 0.9596 mL | 1.9192 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.