BETP

Alias: BETP
Cat No.:V33070 Purity: ≥98%
BETP is a novel and potent PAM (positive allosteric modulator) and partial agonist of glucagon-like peptide-1 (GLP-1) receptor (EC50= 0.66 μM) with antidiabetic effects.
BETP Chemical Structure CAS No.: 1371569-69-5
Product category: GCGR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

BETP is a novel and potent PAM (positive allosteric modulator) and partial agonist of glucagon-like peptide-1 (GLP-1) receptor (EC50= 0.66 μM) with antidiabetic effects. It shows excellent selectivity against glucagon, PTH, GIP, and GLP-2 receptors. In CHO cells expressing GLP-1R, BETP enhanced calcium influx and stimulated glucose-dependent insulin secretion both in vitro and in vivo.

Biological Activity I Assay Protocols (From Reference)
Targets
Human GLP-1 receptor ( EC50 = 0.66 μM ); Rat GLP-1 receptor ( EC50 = 0.755 μM )
ln Vitro
BETP is an agonist of the GLP-1 receptor; its EC50s for the rat and human GLP-1 receptors are 0.755 and 0.66 μM, respectively. In cells expressing GLP-2, GIP, PTH, or glucagon receptors, BETP (Compound B) is inactive. In both normal and diabetic human islets, BETP (1-10 μM) increases insulin secretion. Furthermore, there are additive effects of BETP and GLP-1 on enhancing GLP-1 receptor signaling[1]. Oxyntomodulin's potency is ten times higher with BETP (EC50 of 80 pM). At the glucagon receptor, GLP-1 has no effect on the potencies and efficacies of either oxyntomodulin or glucagon. BETP (0-30 μM) raises oxyntomodulin's affinity for binding to the GLP-1 receptor[2].
ln Vivo
BETP BETP has an insulinotropic effect in SD rats. In the intravenous glucose tolerance test (IVGTT) model, BETP (10 mg/kg, jugular vein cannula) demonstrates insulin secretagogue activity. Rats treated with BETP (10 mg/kg, i.v.) require 20% higher glucose infusion rates and exhibit higher plasma insulin levels in the hyperglycemic clamp model of SD rats[1]. BETP (5 mg/kg) increases insulin release that is triggered by oxyntomodulin[2].
Animal Protocol
Rats: The IVGTT research is carried out. Three male SD rats per cage are kept in groups in polycarbonate cages with filter tops. Rats are kept at 21°C on a 12:12 h light-dark cycle (lights come on at 6:00 a.m.), where they are given an unlimited supply of food and deionized water. Rats are fasted for the entire experiment and given 60 mg/kg of pentobarbital to put them to sleep. The jugular vein is punctured with a 0.84 mm catheter to administer glucose and compounds (BETP, etc.). A larger, 1.02 mm-diameter catheter is placed into the carotid artery to collect blood quickly. At times 0, 2, 4, 6, 10, and 20 minutes following intravenous administration of the BETP, blood is drawn for the measurement of glucose and insulin levels. An intravenous glucose bolus of 0.5 g/kg is then administered right away. Insulin and glucose plasma levels are measured[1].
References

[1]. Novel small molecule glucagon-like peptide-1 receptor agonist stimulates insulin secretion in rodents and from human islets. Diabetes. 2010 Dec;59(12):3099-107.

[2]. Small molecule allosteric modulation of the glucagon-like Peptide-1 receptor enhances the insulinotropic effect of oxyntomodulin. Mol Pharmacol. 2012 Dec;82(6):1066-73.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C20H17N2O2F3S
Molecular Weight
406.42138
Exact Mass
406.1
CAS #
1371569-69-5
Appearance
Light yellow to yellow solid powder
SMILES
CCS(=O)C1=NC(=CC(=N1)C(F)(F)F)C2=CC(=CC=C2)OCC3=CC=CC=C3
InChi Key
NTDFYGSSDDMNHI-UHFFFAOYSA-N
InChi Code
InChI=1S/C20H17F3N2O2S/c1-2-28(26)19-24-17(12-18(25-19)20(21,22)23)15-9-6-10-16(11-15)27-13-14-7-4-3-5-8-14/h3-12H,2,13H2,1H3
Chemical Name
2-ethylsulfinyl-4-(3-phenylmethoxyphenyl)-6-(trifluoromethyl)pyrimidine
Synonyms
BETP
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~25 mg/mL (~61.5 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (6.15 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (6.15 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4605 mL 12.3025 mL 24.6051 mL
5 mM 0.4921 mL 2.4605 mL 4.9210 mL
10 mM 0.2461 mL 1.2303 mL 2.4605 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top