yingweiwo

BML-210 (CAY10433)

Alias: BML-210; CAY10433; BML 210; CAY-10433; BML210; BML-210; 537034-17-6; N1-(2-aminophenyl)-N8-phenyloctanediamide; BML-210(CAY10433); N-(2-aminophenyl)-N'-phenyl-octanediamide; CHEBI:61077; Octanediamide, N-(2-aminophenyl)-N'-phenyl-; CAY 10433.
Cat No.:V5095 Purity: ≥98%
BML-210 (also known as BML210; CAY-10433) is novel and potent HDAC inhibitor (IC50 value: 5 μM) with anticancer activity.
BML-210 (CAY10433)
BML-210 (CAY10433) Chemical Structure CAS No.: 537034-17-6
Product category: HDAC
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

BML-210 (also known as BML210; CAY-10433) is novel and potent HDAC inhibitor (IC50 value: 5 μM) with anticancer activity. BML-210 induces growth inhibition and apoptosis and regulates HDAC and DAPC complex expression levels in cervical cancer cells. BML-210 can inhibit cell growth and induce apoptosis in cervical cancer cells, what correlates with down-regulation of HDAC class I and II and changes in the DAPC expression levels. Cell cycle analysis indicated that HeLa cell treatment with 20 and 30 μM concentration of BML-210 increased the proportion of cells in G0/G1 phase, and caused accumulation in subG1, indicating that the cells are undergoing apoptosis.

Biological Activity I Assay Protocols (From Reference)
Targets
HDAC4; HDAC4-VP16-driven reporter
ln Vitro
NB4 cells are inhibited in their growth and proliferation by BML-210 (10, 20 μM; 24, 48 hours) [2]. The amount of S phase NB4 cells was reduced by BML-210 (10, 20 μM; 24, 48 hours), and at 20 μM, G0 BML-210 (10, 20 μM; 24, 48 hours) had a cytotoxic effect on NB4 cells. A dose of 10 μM is sufficient for BML-210 to cause cell death [2]. In NBT4 cells, BML-210 (10, 20 μM; 24, 48 hours) suppresses HDAC expression and activity [2]. HDAC4-VP16 expression is not downregulated by BML-210[1].Cell lines. NB4 cells Concentration: 10, 20 μM Incubation period: 24, 48 hours Outcomes: Reduced NB4 cell growth and proliferation in a time- and dose-dependent manner.
ln Vivo
BML-210 (20 mg/kg; intraperitoneal injection; three times weekly for two weeks) markedly reduced the amount of body weight and tumor growth. In immunodeficient nude mice, BML-210 has no influence on tumor growth or body weight (Nu/J).
In this study, researchers show that the epigenetic inhibitors GSK-LSD1, CUDC-101 and BML-210, identified by the screen, display antitumour activities in orthotopic mammary tumours in mice, that they upregulate antigen presentation mediated by the major histocompatibility complex class I on breast tumour cells and that treatment with BML-210 substantially sensitized breast tumours to the inhibitor of the checkpoint programmed death-1. Standardized measurements of tumour-cell killing activity facilitated by tumour-organoid-T-cell screens may help with the identification of candidate immunotherapeutics for a range of cancers[3].
Enzyme Assay
HDAC Activity Analysis[2]
Proteins were isolated using ProteoJET™ Mammalian Cell Lysis Reagent (Fermentas, Vilnius, Lithuania) according to the manufacturer's instructions. HDAC activity analysis was determined using EpiQuik™ HDAC Activity/Inhibition Assay Kit according to the manufacturer’s instructions. Absorbance was measured using Tecan-Control, Infinite 200 microplate reader at 450 nm. Activity (ng/h/mL) was calculated using formula.[2]
Drug treatment and luciferase assay[1]
For the two-hybrid assay, cells were treated with 10 µM drug overnight unless indicated otherwise. The amount of DMSO was kept below 0.2% V/V. A luciferase assay was performed according to the manufacturer’s protocol. The luciferase response was normalized against the Renilla Luciferase as an internal control. The data are presented as a mean ± SD (n = 2) of normalized HDAC4:MEF2 luciferase response against the normalized response values for GAL4-VP16 for each condition to correct for non-specific inhibition of the luciferase signal.
Cell Assay
Cell proliferation assay[2]
Cell Types: NB4 cells
Tested Concentrations: 10, 20 μM
Incubation Duration: 24, 48 hrs (hours)
Experimental Results: Inhibited cell proliferation and inhibited the growth of NB4 cells in a dose- and time-dependent manner.

Cell cycle analysis [2]
Cell Types: NB4 cells
Tested Concentrations: 10, 20 μM
Incubation Duration: 24, 48 hrs (hours)
Experimental Results: The proportion of S phase of NB4 cells diminished and the proportion of G0/G1 phase increased. 10 μM increased the G0/G1 phase by up to 70% at 24 and 48 hrs (hours).

Cytotoxicity assay [2]
Cell Types: NB4 cells
Tested Concentrations: 10, 20 μM
Incubation Duration: 24, 48 hrs (hours)
Experimental Results: Cytotoxic effects on NB4 cells were dose- and time-dependent.

Apoptosis analysis [2]
Cell Types: NB4 Cell
Tested Concentrations: 10, 20 μM
Incubation Duration: 24, 48 hrs (hours)
Experimental Results: 10 μM dose induced apoptosis.

Western Blot Analysis[2]
Cell Types: NB4 Cell
Tested Concentrations: 10, 20 μM
Incubation Duration: 24, 48 hrs (hours)
Experimental Results: After 48 hrs (hours) of treatment with 10 μM dose, HDAC1 gene expression was inhibited by up to 36% Aft
Animal Protocol
Animal/Disease Models: Female C57BL/6 mice, mouse breast cancer EO771 cells [3]
Doses: 20 mg/kg
Route of Administration: IP ;[3]. Three times a week for two weeks.
Experimental Results: Significant inhibition of tumor growth and weight.
References

[1]. Inhibition of the function of class IIa HDACs by blocking their interaction with MEF2. Nucleic Acids Res. 2012 Jul; 40(12): 5378–5388.

[2]. The Histone Deacetylase Inhibitor BML-210 Influences Gene and Protein Expression in Human Promyelocytic Leukemia NB4 Cells via Epigenetic Reprogramming. Int J Mol Sci. 2015 Aug; 16(8): 18252–18269.

[3]. An organoid-based screen for epigenetic inhibitors that stimulate antigen presentation and potentiate T-cell-mediated cytotoxicity. Nat Biomed Eng. 2021 Nov;5(11):1320-1335.

Additional Infomation
BML-210 is a dicarboxylic acid diamide comprising suberic (octanedioic) acid coupled to aniline and 1,2-diaminobenzene. It has a role as an EC 3.5.1.98 (histone deacetylase) inhibitor and an antineoplastic agent. It is functionally related to a suberic acid.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C20H25N3O2
Molecular Weight
339.4314
Exact Mass
339.194
Elemental Analysis
C, 70.77; H, 7.42; N, 12.38; O, 9.43
CAS #
537034-17-6
PubChem CID
9543540
Appearance
White to off-white solid powder
Density
1.2±0.1 g/cm3
Boiling Point
632.5±40.0 °C at 760 mmHg
Flash Point
336.3±27.3 °C
Vapour Pressure
0.0±1.9 mmHg at 25°C
Index of Refraction
1.633
LogP
2.58
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
9
Heavy Atom Count
25
Complexity
408
Defined Atom Stereocenter Count
0
SMILES
O=C(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(N([H])C1C([H])=C([H])C([H])=C([H])C=1[H])=O)N([H])C1=C([H])C([H])=C([H])C([H])=C1N([H])[H]
InChi Key
RFLHBLWLFUFFDZ-UHFFFAOYSA-N
InChi Code
InChI=1S/C20H25N3O2/c21-17-12-8-9-13-18(17)23-20(25)15-7-2-1-6-14-19(24)22-16-10-4-3-5-11-16/h3-5,8-13H,1-2,6-7,14-15,21H2,(H,22,24)(H,23,25)
Chemical Name
N-(2-aminophenyl)-N'-phenyl-octanediamide
Synonyms
BML-210; CAY10433; BML 210; CAY-10433; BML210; BML-210; 537034-17-6; N1-(2-aminophenyl)-N8-phenyloctanediamide; BML-210(CAY10433); N-(2-aminophenyl)-N'-phenyl-octanediamide; CHEBI:61077; Octanediamide, N-(2-aminophenyl)-N'-phenyl-; CAY 10433.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ≥ 30 mg/mL (~88.38 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (7.37 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.9461 mL 14.7306 mL 29.4612 mL
5 mM 0.5892 mL 2.9461 mL 5.8922 mL
10 mM 0.2946 mL 1.4731 mL 2.9461 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us