Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
Purity: ≥98%
BMS-191095 is a novel and potent activator of mitochondrial ATP-sensitive potassium (mitoKATP) channels. BMS-191095 induced vasodilation in endothelium-denuded cerebral arteries. In normal rats, BMS-induced vasodilation was mediated by mitochondrial depolarization and calcium sparks generation in VSM and was reduced by inhibition of BKCa channels. However, unlike diazoxide-induced vasodilation, scavenging of ROS had no effect on BMS-191095-induced vasodilation. Electron spin resonance spectroscopy confirmed that diazoxide but not BMS promoted vascular ROS generation. BMS-191095- as well as diazoxide-induced vasodilation, mitochondrial depolarization, and calcium spark generation were diminished in cerebral arteries from ZO rats. Thus pharmacological depolarization of VSM mitochondria by BMS promotes ROS-independent vasodilation via generation of calcium sparks and activation of BKCa channels. Diminished generation of calcium sparks and reduced vasodilation in ZO arteries in response to BMS-191095 and diazoxide provide new insights into mechanisms of cerebrovascular dysfunction in insulin resistance.
ln Vitro |
The medial defractionation of SD smooth vascular smooth muscle cells (VSM) is induced by BMS-191095 (50 μmol/L) [1]. Cellular calcium excitation frequency is increased by BMS-191095 (50 μmol/L), which electrically produces endothelial-denuded cerebral vasodilation (10-100 μmol/L) [1]. Human focus aggregation caused by doxorubicin and collagen is inhibited by BMS-191095 (0-1500 μM), with IC50 values of 63.9 and 104.8 μM, respectively[2].
|
---|---|
ln Vivo |
Intracerebroventricular infusion of BMS-191095 (2.5 or 25 μg) once every 30 minutes, 60 minutes, or 24 hours prior to induction can lessen transitory focal brain damage to injured neurons [3].
|
Animal Protocol |
Animal/Disease Models: Male Wistar rats, ischemia induced by middle cerebral artery occlusion (MCAO) [3]
Doses: 2.5 or 25 μg Route of Administration: intracerebroventricular infusion; once 30 minutes/60 minutes/24 hrs (hrs (hours)) before induction of ischemia Experimental Results: Rats pretreated with 25 mg demonstrated a reduction in total infarct volume 24 hrs (hrs (hours)) before MCA. Induces rapid mitochondrial depolarization. |
References |
|
Molecular Formula |
C22H21CLN4O2
|
---|---|
Molecular Weight |
408.880743741989
|
Exact Mass |
408.135
|
CAS # |
166095-21-2
|
PubChem CID |
9822753
|
Appearance |
White to off-white solid powder
|
LogP |
4.214
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
5
|
Rotatable Bond Count |
4
|
Heavy Atom Count |
29
|
Complexity |
615
|
Defined Atom Stereocenter Count |
2
|
SMILES |
CC1([C@@H]([C@H](C2=C(O1)C=CC(=C2)C#N)N(CC3=NC=CN3)C4=CC=C(C=C4)Cl)O)C
|
InChi Key |
SMIKIPXIDLITMP-LEWJYISDSA-N
|
InChi Code |
InChI=1S/C22H21ClN4O2/c1-22(2)21(28)20(17-11-14(12-24)3-8-18(17)29-22)27(13-19-25-9-10-26-19)16-6-4-15(23)5-7-16/h3-11,20-21,28H,13H2,1-2H3,(H,25,26)/t20-,21+/m0/s1
|
Chemical Name |
(3R,4S)-4-[4-chloro-N-(1H-imidazol-2-ylmethyl)anilino]-3-hydroxy-2,2-dimethyl-3,4-dihydrochromene-6-carbonitrile
|
Synonyms |
BMS-191095; BMS191095; BMS 191095
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~100 mg/mL (~244.57 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: 2.5 mg/mL (6.11 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: 2.5 mg/mL (6.11 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (6.11 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.4457 mL | 12.2285 mL | 24.4571 mL | |
5 mM | 0.4891 mL | 2.4457 mL | 4.8914 mL | |
10 mM | 0.2446 mL | 1.2229 mL | 2.4457 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
![]() BMS-191095 (BMS) induced mitochondrial-depolarization and vasodilation.Am J Physiol Heart Circ Physiol.2014 Aug 15;307(4):H493-503. th> |
---|
![]() Mitochondrial depolarization in Zucker rat arteries.Am J Physiol Heart Circ Physiol.2014 Aug 15;307(4):H493-503. td> |
![]() Calcium sparks generation in response to BMS-191095 and diazoxide.Am J Physiol Heart Circ Physiol.2014 Aug 15;307(4):H493-503. td> |